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Spin Relaxation Processes in a Two-Proton System*
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The general theory of nuclear spin relaxation, based on the Boltzmann transport equation for the density
matrix, is applied to the very simple, nontrivial system of two identical spins I=~. A proton pair undergoing
hindered rotation around one axis shows a resolvable doublet. The relaxation processes in this doublet are
investigated. Explicit formulas for the longitudinal and transverse relaxation times are derived, which
display a dependence on the angles of the axis of rotation with the external magnetic Geld and the radius
vector. Experimental evidence for this dependence is discussed. General expressions for the Overhauser
and saturation e6'ects with two applied radio-frequency Gelds are given, which may also be applied to a
magnetic ion or nucleus with I= 1 and crystalline Geld splitting.

I. INTRODUCTION
' JAKE' has shown that a static pair of protons gives

rise to a resonance doublet. Gutowski and Pake'
extended the theory to the case of a proton pair rotating
rapidly about an arbitrary axis. Again a doublet results,
but with a different splitting. The theory for a static
or rotating proton triangle was developed by Andrew
and Bersohn. 3 Numerous experimental investigations of
the magnetic resonance of proton pairs, triangles, and
tetrahedra have subsequently been made. 4

The spin-lattice relaxation in these structures has,
however, received little attention. Solomon' ' has dis-

cussed the relaxation for a pair of nonidentical spins
which undergo completely random motions and have
no resolved fine structure. In this paper the relaxation
effects in a doublet are discussed, when motion around

only one axis is present. Two identical spins I=—,', with

dipolar interaction and a restricted motion, constitute
perhaps the simplest nontrivial system, to which the
general theories of nuclear spin dynamics may be
applied. These have recently been formulated by
various authors, ~ ' and are based on the Boltzmann
transport equation for the density matrix, introduced

by Bloch."We shall follow a particularly concise for-
mulation due to Redfield. ' This exercise in the appli-
cation of the general theory will show that the experi-
mental study of relaxation of proton pairs, and other
groups of nuclear spins, may give additional information
on the structure and internal motion in solids.
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II. THEORY OF SPIN RELAXATION IN
A PROTON PAIR

A pair of protons with dipolar and exchange inter-
action is embedded in a constant magnetic Geld Ho
taken in the z direction. The Hamiltonian is given by

X Xm+ 5Cdip+ Xexy

3e„=yh(It'+Is')Zp,

SC. =Alt Is,

3cd' Y It rls jI1' Is 3(ll' rip) (Is' rls)rls }. (4)

Since the Hamiltonian is symmetric in the two spins,
the antisymmetric singlet state is a constant of the
motion. No transitions to the triplet state can occur.
The singlet state has zero magnetic moment and is unob-
servable in the context of this paper. The dynamical
behavior of the three triplet states, denoted by +, 0,
—,corresponding to a magnetic quantum number
Ii'+Is' 1, 0 or —1, is d——escribed by the quantum-
mechanical equation of motion for the three-by-three
spin density matrix o'.

r)o/r)t =—i)t—'[X,o.7. (~)
Since the exchange interaction is a multiple of the

unit matrix and commutes with the Hamiltonian (1),
it does not affect the motion of the triplet spin system
and is henceforth omitted. The dipolar interaction
consists of a part which depends explicitly on the time
and a time-independent part. The completely random
motion in a liquid leads to an averaging-out of the
dipolar interaction with a single resonance line, and
has been discussed extensively. The case of interest
here is a restricted motion of the proton pair around
a single axis, which we shall designate the z axis.

Two resonance lines are distinguishable with this
restricted motion. Let the axis of hindered rotation
make an angle fp with the external magnetic field Hp.
Let the radius vector rI~ make a constant angle 8' with
the axis of rotation. The variable azimuth is denoted by
p'(t). The dipolar interaction can be expanded into
spherical harmonics with respect to the z axis, and
these in turn can be transformed to spherical harmonics
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in the primed coordinate system. The coefficients in this
transformation are the irreducible representations
n&2&(o,fp,o) of the group of three-dimensional rota-
tions, described by Wigner. "With the introduction of
the raising and lowering operators I+=I,&I„,one can
write

xd v +f k r12 (I1 I2 3I1 I2 )I p
' (0)

7 k r12 (Il I2 +Il I2 )++1 (0 4')

(6a)

(6b)

with

—1y h, r12 2I1+I2+Py21 ~ (8 $) (6C)

In this form all matrix elements in the (+0—) repre-
sentation can be written down at once, and the time-
independent part is clearly separated. It consists of
the terms 222'=0 which do not depend. on p'. The time-
dependent matrix elements occur in the form

ac...(t)=P, K..' H(pt),

which is used in the theories of Bloch and Redfield.
The E& are Hermitian spin operators which do not
contain the time explicitly and the H'(t) depend only
on the time-dependent lattice coordinate. The Hp(t) can
be chosen as the four real functions cosp', sin&', 2 cosp'
and sin2tt '. With random time variations of p', introduce
the generalized correlation functions and spectral densi-
ties of the functions Hp(t) by

k„(~)=-', ~ p'-(H (t)H*"(t—r))dr.

2

z„'(e,y)= p n„„. (O,p„o)z . (s',y'). (7)
mf 2

The P&') are the unnormalized spherical harmonics

Pp&2& =-'(3 cos28 —1),

P~~&"=
~ sin8 cosine+'&

P &') =3 sin'Oe+"&

Here 0~~) is the diagonal spin density matrix corre-
sponding to thermal equilibrium at the lattice tem-
perature T.

o &r&=exp( —E /kT)/P exp( —E /kT). (13)

Equation (12) gives a complete dynamical description
for any magnitude of the external field Ho, including
zero. It contains all interference and nonsecular per-
turbation eBects between the five independent elements
of the density matrix, whose trace is normalized to
unity. The five independent coupled differential equa-
tions, represented by the operator relation Eq. (12),
would still be difficult to solve, but the problem is con-
siderably simpler than the complete motion of two
nonidentical spins, which is described by nine coupled
equations. "

Considerable simplification results if nonsecular per-
turbations are neglected and the time-independent
Hamiltonian is diagonal in the representation chosen.
The latter situation occurs when the external field is
large, 3CO&&K~;„and only first-order perturbation
theory to the time-independent part of Kp'p is applied.
One obtains the result of Gutowski and Pake':

Ey =yhHp —4ypkpr 12
—'(3 cos2fp —1),

Ep +2y'k'r12 ——'(3 cos'Pp —1),

E = —ykHp —41y2kpr12 '(3 cospp —1).

Redfield' shows that application of second-order per-
turbation theory with the random time-dependent part
leads to the following equation for the density matrix:

= —2k(E- —E- )o- +Z R- pp opp
Bt pp'

x(~, ~', p, p'=+, 0, —). (15)

Only secular perturbations will be retained. The secular
elements of the relaxation matrix, which satisfy the
condition

i
E Ep E+Ep i

—R p—p (16)
The correlation function is essentially zero for r«r„

e correlation time. Redfield has shown that for short are time-indePendent constants, given by
correlation times —that is, for R- pp =Z Dk«(~- ~p)+k«—(~- ~p))K-p'K—- p"

r.It;"(E —Ep)«1

where E —Ep represents the diGerence between any
pair of energy levels of the time-independent Hamil-
tonian, the equation of motion can be written in the
operator form

Ba—= —2k-'[X +Xg; '"' o7
at

—Q [KP, [KP', o —o &r&77k«. (0). (12)

"E. P. Wigner, Gruppentheorie (E. Vieweg, Braunschweig,
1931), Chap. 15.

—8 p P k (p1 p1 )K p'K-
&-pZvk-—(~v ~-)Kpv'K-"7 (17)

provided the correlation time satisfies the condition

R pp r,«1.
If R pp r. 1, a transition fr'om time-dependent to
time-independent character of the perturbation takes
place. This case, which has been discussed extensively
in the literature, ' will not be pursued here.

"A. Zahlen and E. P. Gross, Bull. Am. Phys. Soc. Ser. II, 1,
216 (1956),
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The nonsecular elements which do not satisfy (16)
will be neglected. In general they give rise to very small
oscillatory components in the density matrix element.
Unless there are partially or completely overlapping
resonance lines, the condition (16) is only satisfied for

E Ep —E—+Ep =0. . (19)

(Hq (t)H*"(t+r))= e "'t')„, -
(20)

This observation is important. It implies that diagonal
matrix elements of 0. relax independently of the values
of the off-diagonal elements. OG-diagonal elements
relax independently of the diagonal elements and oG-

diagonal elements with another frequency. This state-
ment justifies the procedure, generally adopted, to
treat longitudinal and transverse relaxation inde-
pendently. Solomon's treatment' for the relaxation
processes in HF is therefore justified, and corresponds
exactly to solving Eqs. (15) and (17) for that case.

Here the general theory will be applied to a proton
pair. Assume first that the proton pair gives rise to a
well-resolved doublet. This is the experimental criterion
that the condition of secularity (16) is only satisfied for
E —E =Ep—Ep . Some simplification results in our
particular case, if complex functions Hq(t) =exp(Witt ')
and exp(&2+') are used. Two simple models for the
random motion of the tt

' coordinate will be investigated.
(a) Random jumps between three equilibrium posi-

tions pp', tt)p'&120' occur at an average rate of (3r) '
transitions per second to either of the two adjacent
positions. The correlation functions are in this case

Bop/(tt = (wp+ pw1+ pw2+&&o+p) g+pt

Bgp /Bt= —(wp+ pwi+ pwq+z(t)p —)o'p—,

()g+ /Bt= —(+wi+wp+pp)+ )o+ t

with

(27a)

(27b)

(28)

++~=+——~=—2E.00~= —y ~ r
(q) (0 y, 0)p (q) (0 )

K q=K q= —y'5'r '2 &S (')(0$ 0)P &')(0')

q —K pq
——y&))tpy p p2 kQ i (p)(p fp 0)p (&)(gt)

(25)
K q= 'y'h—'r -—'n &') (0 f 0)P &') (0')

K ~q= —-', y'ttt'rip 'X) q, (') (Opf p,p)P, (') (8').

The P, (q)(t)') functions are given by Eqs. (8), if the
exponential factor depending on ttt' is omitted.

Substitution of (24) and (25) into (17) and sub-
sequently into (15), ignoring nonsecular terms with
E E E—(t+E—tt &0, leads to the following set of
relaxation equations:

~g++/~t = —(+wi+wq) (g++—g++"')
+wl(g pp g ()()(r))+wq(tr g—(») (26a)

Bgpp/() t =wi(o++ —g++(r)) —2wi(o pp
—gpp(»)

+wi(o= —o (r)), (26b)

Bg /Bt=wp(g„~ o„+ ')+—Wi(opp opp )). —
—(w&+wq) (o o—(r'), (26c)

and the nonvanishing spectral densities are

k„(&p)= r/(1+to'r'). (21)

wp ——(pP) Py4N'iq 'r {2 simp cosQp sin'8' cos'0'

+8 simp sin'8'), (29)

p(y', t) = exp( @'r/4t)dy'. —
2(~tr ')'-

The correlation functions are in this case

p+00

(22)

(b) There are a very large number of equilibrium
positions and a stochastic diGusion process describes
the motion in azimuthal angle. The probability to find
the pair at an angle tt)p'+t)It' at time t, when it was at tttp'

for t=0, is given by the Gaussian distribution

(
wi ~P'5 rip '(1 cosQp)—sin'8'~

&1+—'&o p'r'&

+ ,'py4htrip '—(4cosQp —3 cosQp+1)

( 2r
&&sin'8' cos'8'~

E1+~ r )
= same expression with co+0 replaced by oro,

9
w, = y'h, 'rip '(1+6 cos'Pp+cosQp)

128

(30)

(e+'&'("e+'&'"')= p(p' t)e'p'dtjt'= e " (23a)

(e+pip'(t)eTpip'(p)) e 4tlt—
Again the spectral densities vanish for q &q'.

kq, ;=~i r/(1+to' r'), ——

&q, q =+q=-'r/(1+ —'s~'r')

(23b)

(24a)

(24b)

The nonvanishing spin matrix elements E p& are
obtained from Eqs. (6), (7), (8) and (9).

9
Xsintt)'I I+—y4It rip '(1—cosgp)

& 1+—,'pp)+ 'r'& 32
( 2r

&(sin't)' cos'0'
~

~. (31)
(1+&p+ 'r')

These formulas hold for the case of stochastic di6usion
of the azimuthal angle. They can immediately be
changed to the case of random jumps between three
equilibrium positions by using Eq. (21) rather than
(24). The small difference between (o~p and top in the
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expression for m~ has been ignored. The 5)&') functions
have been taken from Wigner. The normalized constants
have been checked by direct trigonometric transfor-
mation of the functions (8), which led to the results
about as quickly as the use of Wigner's general formula
in this case.

The set of Eqs. (26) describe the longitudinal relaxa-
tion. There are two characteristic times, as could be
expected for a problem with effective spin 1. The
"magnetic moment relaxation"" is characterized by

~( ++——) 1 0++
(~++—o—)=

2fop+ tffi Ti
(32)

The intensity of the magnetic resonance absorption
lines is proportional to 0-++—C.pp ol Opp —0, and will
in general approach an equilibrium according to a
linear combination of two exponentials, a exp( —t/Ti)
+ffexp( —t/Di)+c, where the coefTicients a and b are
determined by the initial conditions, and c by the
lattice temperature.

The two lines have the same transverse relaxation
time according to Eq. (27),

Tp =Wp+ pWi+ pWp.

The 0.+ component decays with another characteristic
time, but does not correspond to an observable quantity
in a magnetic resonance experiment.

The transverse and longitudinal relaxation times are
in general not equal even in the case of very short cor-
relation times LEq. (11)j.They have a diferent angular
dependence on Pp in this nonisotropic case.

For 1—3cos'Pp=O, the two resonance lines will
coincide according to Eq. (14).In this case perturbation
theory should be carried to a higher order to determine
the position of the energy levels, but the splitting will

certainly be very small. When the frequency of the two
lines becomes nearly equal, the nonsecular nature of
the term Jt+pp becomes questionable. In other words,
there is a term for which the left-hand side of Eq. (16)
is of the order of unity. A changeover from nonsecular
to secular character takes place. The term can be
carried along in a rigorous manner provided the cor-
relation time r, is short compared to k(E+ Ep—Ep-
+E ) '. A set of two coupled equations for the off-
diagonal elements 0+p and o=p should be solved

a~+p/at=icoypo'yp+~~po'~p+~pp op-
80'p /Bt=zÃp op +Ep p op+Re +po+p. ''

'P F. Lurcat, Compt. rend. 240, 2402, 2517 (l.955).

(35)

The "quadrupole moment relaxation" is described by

ft(o+++o —2o pp) 1
(o'+++ 0' —20'pp)

3'Ny

o'+~+0 20'pp

(33)

This corresponds to a partial application of the general
operator formulation, Eq. (12), which contains all
interference and nonsecular effects. Equations (35)
describe the frequency pulling and damping by cross-
relaxation of off-diagonal elements which have nearly
the same frequency. The coupled system can readily
be solved for the two normal modes. This situation,
which illustrates the principles and limitations involved
in the distinction between secular and nonsecular per-
turbations is rather academic. The overlap of resonance
lines is the experimental counterpart of this theory of
cross-relaxation. In the case of a proton pair in a solid.
lattice the e6ect described by Eqs. (35) will be obscured
completely by the interaction from neighboring moments
outside the pair.

pkHi«h(v+p vp )«hv+p (36)

The situation can be treated in the same manner as
the "weak external field" case, considered by Bloch."
The terminology "weak" refers to the condition (36).
It will be shown here that Bloch's considerations can
readily be generalized to include the case of more than
one applied frequency. The radio-frequency amplitudes
can each have saturating strength. Because of the
assumptions made at the beginning of this section, the
eGect of each frequency on all transitions but one that
is near resonance, can be disregarded as nonsecular
perturbations.

The circularly polarized fields add the following term
to the Hamiltonian:

5Crf p&MIi(vip') ((Ii++Ip+)e '"+"'

+(Ii—+Ip )e+'" "+) +'yh H(ivp')
X ( (I,++Ip+)e *"o "+(I +I --)e+-'"o-' ) (37)-

The equation of motion for the off-diagonal components
of the density matrix in the stationary state with
driving 6elds become

—$M+p o'+p= ffdypfryp 0—+p/Tp- '

+ ', f'yHi(v~p')-42(opp o++), . (3—8a)

ffop o'p = ZMp o'p op/Tp'
+ ',iyHf(vp ')V2(o-opp) (38b)— .

These equations replace Eqs. (27). There are corre-
sponding complex conjugate equations for 0-p+ and 0. p.

The steady-state solution for the diagonal com-
ponents is obtained by putting the left-hand side of

'4 F. Bloch, reference 8, Sec. III.

GI. SATURATION AND OVERHAUSER EFFECT

Consider the case that two radio-frequency magnetic
fields are applied. Hi(v+p ) has a frequency close to the
resonant frequency v~p, H, (vp ') is close to the resonance
frequency vp of the other line. Assume that the am-
plitudes of both fields satisfy the relation
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(1+Sp ) (o pp
—o. ) = o.pp'r' —o.

(r+y+ «p+(r——= 1. (39c)

The two saturation parameters are defined by

S~p y Hr (v+p ) Tp7o] {(vip' v+p)'Ts'+—1) ', (40a)

Sp =y Hr (vp )Tp'(or {(-vp —vp ) Ts +1j . (40b)

The signal intensities of the two resonance lines are
proportional to (o~~—opp) and (opp —o ), as can be
seen from Eqs. (38). In the important special case that
only one of the radio-frequency amplitudes is of satur-
ating strength, e.g., So =0, m~S+0—+~, one obtains for
the Overhauser effect, i.e., the factor fo by which the
line at vo is changed on application of a very strong
6eld at v+o,

'(or+ 2wp()—
V

'(or+'(gp
(41)

The very good approximation has been made that

g (&)—g (&) 2(gpp(&) g P'))

The Overhauser effect depends on the orientation fp
through Eqs. (25) and (26). There is no Overhauser
effect, if +2=0. The enhancement factor reaches a
maximum value 2 for wr=0. Equations (39) are, of
course, much more general than the special case, Eq.
(41). They describe in conjunction with Eqs. (38) the
intensity of both signals and include completely all
saturation eGects on the application of two radio-
frequency fields.

Similar considerations apply to any system with
three unequally spaced levels, in particular to a nucleus
with I=1 and quadrupole interaction, or a magnetic
ion S=i in a crystalline field. Khereas the case that
both 6elds are of saturating strength is not of particular
interest for a proton pair, it is very important in the
analysis of the operation of a recently proposed solid-

Eqs. (26) equal to zero and adding a term

—ss7H)(v+p')v2(o~ ~+p)

to the right-hand side of (26a),

,'i—y—Hr (vp+')%2(o p a—p)

to (26c) and subtract the sum of these terms from the
right-hand side of (26b). Solution of the set of steady-
state equations leads, by elimination of the off-diagonal
elements, to

state Maser. " In general, transitions between the +
and —level 'could also occur. They can readily be
incorporated in the analysis.

The treatment presented here has to be modified if
one of the radio-frequency fields becomes larger than
the intrinsic line width, yII~&T2 . A rigorous dis-
cussion has been given for the case than one radio-
frequency Geld is very large, while the other is relatively
weak. Transform to a rotating coordinate system to
eliminate the explicit time dependence of the strong
field. Red6eld" has discussed the transformation of the
dipolar interaction and relaxation terms in the rotating
system. The magnetic resonance response to the weak
field is split into components. Their spacing and relative
amplitudes depend on the value of the effective field
in the rotating system. ' '

For dipolar pairs in a solid lattice, an integration over
a distribution of local fields must be carried out. The
individual components will not be resolved. The
smoothed-out absorption will follow at least quali-
tatively the equations derived in this section, unless the
condition (36) is violated and the saturating Geld spans
both lines.

IV. DISCUSSION AND COMPARISON
WITH EXPERIMENT

The ideal situation of an isolated spin pair with
hindered rotation cannot be found in actual solids.
There will be interaction with neighboring pairs or
other dipole moments in the crystalline lattice. This
interaction can cause transitions between the singlet
and the triplet states and its rigorous inclusion into the
theory would be quite cumbersome. Its inQuence is most
prominent, however, on the observed line width, since
it produces a wide distribution of resonant frequencies.
The observation of T2 calculated above is only possible
if the effect of the static fields from neighboring pairs
is eliminated. This can be done in principle by applying
a radio-frequency 6eld which is strong enough to produce
complete saturation of an individual component, but
does not span both components of the pair of resonance
lines simultaneously. One moves into the center of reso-
nance of one component in an adiabatic rapid passage
variation of the external magnetic 6eld and then stops,
while leaving the radiofrequency 6eld on. The magneti-
zation will then decay to zero with a characteristic time
T2. Its signal may be picked up, for example, in a second
crossed coil. The presence of the focusing radio-frequency
field prevents loss of phase memory due to a distribution
in static local fields. If the external magnetic 6eld is
modulated with a frequency co = T~

—' in the presence
of a strong radio-frequency field, ' the phase shift of

"N. Bloembergen, Phys. Rev. 104, 324 (1956).
A. G. Redfield, Phys. Rev. 98, 1787 (1955). The T2 in this

paper corresponds to T~, in this reference, if a small contribution
of time-dependent interaction with outside neighbors is neglected.

'7 F. Bloch, reference 8, Sec. VII."S. H. Antler and C. H. Townes, Phys. Rev. 100, 703 (1955)
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the observed signal with respect to the modulation will

also make a measurement of T2 possible. No such experi-
mental data are available at present.

Steady-state saturation e8ects should be modified
according to Redfield's theory" to take into account
the distribution of local fields. This is especially im-

portant for the dispersive, "in-phase" part of the radio-
frequency magnetization. Longitudinal relaxation times
can be measured by steady-state saturation experiments
or by direct observation of the recovery of magnetiza-
tion after saturation. The interaction with the other
spin of a proton pair, undergoing hindered rotation,
may very well be the dominant factor for longitudinal
relaxation. Equations (30) and (31) show a marked
angular dependence. An important special case will

now be considered in more detail.
8'=m./2, $0——0. The pair rotates around a perpen-

dicular axis, which is parallel to the external magnetic
field. In this case one has m&

——0, m2)0. Steady-state
saturation of each of the components should occur very
readily according to Eqs. (39). In practice the field
intensity required for saturation will not be zero, as
relaxation by outside interactions will take over. The
field required for saturation will, however, go through a
minimum for $0——0. It follows from Eqs. (10) that this
orientation corresponds to a maximum splitting of the
two lines. In a polycrystalline sample, the tails will

correspondingly saturate more readily than the center
of the resonance absorption. This argument holds not
only for a pair, but for any planar configuration of
spins rotating around a perpendicular axis. For every
individual dipolar interaction has the angles 8'=~/2
and Po ——0, and consequently wi ——0. The tails of the
absorption by proton triangles in a polycrystalline
specimen also correspond dominantly to the orientation
$0=0. Richards" has observed preferential saturation
of the tails. Saturation of the tails could also account
for too small values of the second moment of the absorp-
tion line reported by Andrew' and by Powles and
Gutowski. "

' R. E. Richards (private communication). The author is
indebted to Dr, Richards for discussions on the experimental
situation, which led to this work.

20 J. G. Powles and H. S. Gutowski, J. Chem. Phys. 21, 1695
(1953).

A detailed investigation of the angular dependence Po
of the saturation for a proton pair in a single crystal
rotating with 8'= ~/2, would provide a complete
analysis of the intra- and intermolecular contributions
to the relaxation time. The relaxation time should
reach a maximum for $0——0. For the same orientation.
the intensity of the other line would become a maximum
through the Overhauser eGect. The theoretical increase
of a factor two will not be reached because other
neighbors will prevent z» from becoming exactly zero.
The detailed nature of motion around the preferred
axis is irrelevant for the angular dependence of the
relaxation mechanism. It could be a hindered rotation,
torsional oscillations interrupted by tunneling, etc.

The case 0'=0 is trivial. When the axis of rotation is
parallel to the radius vector, there is essentially no
relative motion in the pair: zv~

——m2
——0. Relaxation can

only arise from interaction with outside neighbors.
If the correlation time v, becomes long and the con-

dition (18) is invalidated, the splitting will not be given
by Eq. (14).In the limit of the quasi-static case, ' where
the correlation time is much longer than the inverse
dipolar interaction, (3 cos'Po —1) has to be replaced by
2 (3 cos'8 —1). There will be a pair of resonance lines
for each occurring value of 8. For $0——0 and 8'=~/2,
one has 8=m./2.

It is still possible that the slow angular variation
around the equilibrium 0, or the occasional jump
between two equilibrium values of 0, provides the
dominant relaxation mechanism. Then Eqs. (30) and
(31) for the angular dependence of wi and m, still hold.
The relaxation times would become long in view of the
very large value of r. It is more probable that in the
case of slow motion, other relaxation mechanisms based
on interactions with other neighbors, take over. Then
there would be no Overhauser eGect and the angular
dependence of saturation would be different. Experi-
ments on the proton resonance in a gypsum single
crystal could confirm whether intra- or intermolecular
relaxation is the more important.
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