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ABSTRACT: The foundations and characteristics of models and methods used in diffu-

sion magnetic resonance imaging, with particular reference to in vivo brain imaging, are

reviewed.

The first section introduces Fick’s laws, propagators, and the relationship between tis-

sue microstructure and the statistical properties of diffusion of water molecules. The sec-

ond section introduces the diffusion-weighted signal in terms of diffusion of magnetiza-

tion (Bloch–Torrey equation) and of spin-bearing particles (cumulant expansion). The

third section is dedicated to the rank-2 tensor model, the bb-matrix, and the derivation of

indexes of anisotropy and shape. The fourth section introduces diffusion in multiple com-

partments: Gaussian mixture models, relationship between fiber layout, displacement

probability and diffusivity, and effect of the b-value. The fifth section is devoted to

higher-order generalizations of the tensor model: singular value decompositions (SVD),

representation of angular diffusivity patterns and derivation of generalized anisotropy

(GA) and scaled entropy (SE), and modeling of non-Gaussian diffusion by means of se-

ries expansion of Fick’s laws. The sixth section covers spherical harmonic decomposition

(SHD) and determination of fiber orientation by means of spherical deconvolution. The

seventh section presents the Fourier relationship between signal and displacement prob-

ability (Q-space imaging, QSI, or diffusion-spectrum imaging, DSI), and reconstruction of

orientation-distribution functions (ODF) by means of the Funk–Radon transform (Q-ball

imaging, QBI). � 2007 Wiley Periodicals, Inc. Concepts Magn Reson Part A 30A: 278–307,

2007.
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I. INTRODUCTION

By enabling to obtain sections of gross brain anat-

omy noninvasively, the introduction of computed to-

mography and, later, magnetic resonance imaging

opened new perspectives for medicine and neuro-

science. Although based on very different physical

principles, both techniques visualize anatomy by

obtaining scalar measurements for each voxel. In

order to increase the amount of structural information

provided, it is necessary to increase spatial resolu-

tion.

As an alternative or as a complement to reducing

voxel size, one may endeavor to extract more infor-

mation beyond a scalar. In particular, analyzing the

statistical properties of Brownian motion of water

molecules captured by the NMR signal can serve as a

probe for the characteristics of biological microstruc-

tures orders of magnitude smaller than voxels.

Although chemists and physicists have been prob-

ing molecular diffusion by means of NMR since the

sixties, the first in vivo diffusion imaging studies date

back to the work of Le Bihan and Moseley in the

eighties (1–4). Today, diffusion imaging is widely

accepted as an important tool in the clinical and

research routine, mostly for brain imaging. For exam-

ple, it provides the earliest and most sensitive marker

of ischemia, it provides quantitative indexes of ana-

tomical connectivity strongly correlating with clini-

cal scores, it enables to reconstruct the path of axonal

bundles in three dimensions (5).
These successes were made possible by limited ex-

perimental requirements, stemming from two simpli-

fying assumptions, namely presence of a single direc-

tional diffusivity maximum and Gaussian nature of

the diffusion process. However, the former assump-

tion causes significant measurement bias in areas of

the brain in which structures are heterogeneously ori-

ented, and the latter one results in loss of information

about hindrance and restriction of diffusion.

Research into models and methods removing these

assumptions produced a relatively large body of liter-

ature, with formalisms borrowing from several

branches of physics. Due to its relative novelty, this

field of research has been lacking a review to serve

as an easily accessible introduction.

This pedagogically-oriented review is intended to

guide the reader through the foundations and charac-

teristics of these advanced models and methods.

The focus is on theory rather than on experimental

and computational issues. The reader new to the field

of diffusion imaging may in particular benefit from

the two-part review by Price, covering basic theory

and experimental aspects (6, 7). The present review

does not cover in vitro diffusion spectroscopy of po-

rous materials and biological tissues, which has

developed along different lines thanks to less restric-

tive experimental conditions. It also does not cover

fiber tractography.

II. SELF DIFFUSION OF WATER
MOLECULES IN THE BRAIN
PARENCHYMA

Diffusion is the process by which matter is irreversi-

bly transported as a result of random molecular

motion. It belongs to the family of irreversible proc-

esses like heat conductivity or electric conductivity,

the thermodynamics of which is described by general

equations relating fluxes (Ji) and forces (X ¼
�!F(r, t)), Ji ¼

P
j Lij Xj, where Lij ¼ Lji are coeffi-

cients of proportionality (8–11).
The classical phenomenological description of dif-

fusion is based on the assumption of concentration

Abbreviations

ANOVA analysis of variance
DKI diffusional kurtosis imaging
DSI diffusion spectrum imaging
DTI diffusion tensor imaging
EAP ensemble average propagator
FA fractional anisotropy
FMI fiber multiplicity index
FRT Funk–Radon transform
GA generalized anisotropy
GDTI generalized diffusion tensor imaging
HARDI high angular resolution diffusion imaging
IVOH intravoxel orientational heterogeneity
LI linear index
ODF orientation density (or distribution) function
PDF probability density function
PGSE pulsed-gradient spin-echo
QBI Q-ball imaging
QSI Q-space imaging
RA relative anisotropy
SE scaled entropy
SGP short gradient pulse
SHD spherical harmonic decomposition
SI spherical index
SVD singular value decomposition
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gradients of molecules of interest; in a homogeneous

fluid, such as water, these can be established by

introducing tracer molecules (e.g., by using inks or

isotopic labeling) of spatial distribution known at the

time origin. Even though at the microscopic scale it

is not possible to predict which way a particular mol-

ecule will move at a given time, at the macroscopic

level a definite fraction of molecules will cross a

given section in a time interval, resulting in a net

transfer if there is a concentration gradient (11).
This is expressed in Fick’s first law, which in one

dimension can be written as

J ¼ �D
qC

qx
; [1]

where J is the molecular flux density, D is known as

diffusion coefficient (usually expressed in mm2 s�1),

and C is the concentration of molecules (11, 12).
Since mass is conserved, we can write

qC

qt
¼ � qJ

qx
: [2]

Substitution of Eq. [1] in Eq. [2] gives

qC

qt
¼ D

q2C

qx2
; [3]

which is known as Fick’s second law (11, 12).
For isotropic diffusion in three dimensions,

Eq. [1] becomes

J ¼ �DrC; [4]

which is equivalent to

Jx

Jy

Jz

0
@

1
A ¼ �D

qC
qx
qC
qy
qC
qz

0
B@

1
CA: [5]

Equation [2] becomes

qC

qt
¼ �r � J; [6]

which is equivalent to

qC

qt
¼ � qJx

qx
þ qJy

qy
þ qJz

qz

� �
: [7]

Combining Eqs. [4] and [6], we obtain Fick’s second

law in three dimensions

qC

qt
¼ r � ðDrCÞ; [8]

which, provided D is homogeneous, is equivalent to

qC

qt
¼ D

q2C
qx2

þ q2C

qy2
þ q2C

qz2

� �
: [9]

Let us consider the case of anisotropic diffusion, for

which the concentration vector !C and the molecu-

lar flux vector J are not oppositely oriented. It is nat-

ural to relate them with a 3 � 3 matrix:

J ¼ �DrC; [10]

where the D matrix represents a rank-2 diffusion ten-

sor. While the scalar diffusion coefficient D relates

the magnitudes of vectors J and !C, the diffusion

tensor D relates both their magnitudes and orienta-

tions.

The diffusion tensor has the form

D ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
@

1
A; [11]

and it can be shown that D is positive definite and

symmetric (10, 11, 13).
The diffusion tensor can be thus decomposed

D ¼ RLR
T; [12]

where R ¼ (e1 e2 e3) is a matrix of the column eigen-

vectors ev and L ¼ diag (l1 l2 l3) is a diagonal ma-

trix of the eigenvalues lv. It is usual to sort the eigen-

values and eigenvectors, so that l1 � l2 � l3. Geo-

metrically the diffusion tensor can be represented by

a triaxial ellipsoid in the reference frame of the

eigenvectors (14).
Thermally-induced Brownian motion takes place

regardless of the initial concentration of molecules.

For the case of homogeneous initial concentration,

the net flux is zero and the process is known as self-
diffusion (10, 11). Its description is possible in terms

of probability density functions (PDFs), i.e., in terms

of distributions of the probability of finding a given

particle at specific position, at given time. More spe-

cifically, let us consider the probability for a given

molecule at position r to undergo a displacement to

r0 during time interval t: the corresponding function

is known as a propagator, and can be written as P(r,
r0, t) (11, 15, 16).

Considering J as a flux of probability density, it is

possible to rewrite Fick’s first law as

J ¼ �DrP: [13]

280 MINATI AND WĘGLARZ

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



The continuity theorem gives that

qP

qt
¼ �r � J; [14]

from which we obtain the Fokker–Planck equation,
corresponding to Fick’s second law:

qP

qt
¼ r � ðDrPÞ: [15]

This equation is used as a starting point for the solu-

tion of problems related to stochastic processes, irre-

versibility, and spin relaxation. Although it was intro-

duced here by correspondence with the classical

Fick’s equation, it can be derived directly from the

elementary model of random walk (8, 17).
In this review, we are concerned with the macro-

scopic properties of a process which arises from the

motion of very large numbers of particles. The aver-

age over a number of particles is known as ensemble
average, and is usually written as hf ðxÞi; it is given

by

hf ðxÞi ¼
Z

f ðxÞpðxÞdx; [16]

where p(x) is the distribution of x. The ensemble av-

erage propagator (EAP), or displacement PDF, can
be written as

PðR; tÞ ¼
Z

Pðr; r0; tÞrðrÞdr; [17]

where R ¼ r � r0, and where r(r) is the initial den-

sity of molecules (15, 16).
For the simplest case, free diffusion in one dimen-

sion, the EAP is Gaussian,

PðX; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ps2Þ

p exp � X2

2s2

� �
; [18]

where X is the one-dimensional displacement (11,
15, 16).

Given that the process is a random walk, the var-

iance s2 is the sum of the variances of the elemen-

tary steps; since they are equal, it is proportional to

total time

s2 ¼ 2Dt: [19]

The standard deviation defines the characteristic dif-
fusion length

‘ ¼
ffiffiffiffiffiffiffiffi
2Dt

p
; [20]

which is also referred to as Einstein length, or root-
mean-square displacement; in three dimensions it

becomes (11, 18)

‘ ¼
ffiffiffiffiffiffiffiffi
6Dt

p
: [21]

Equation [18] can be written for three dimensions as

PðR; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4DptÞ3

q exp � jRj2

4Dt

 !
; [22]

from which extension to anisotropic diffusion is not

difficult (11, 15, 16)

PðR; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDjð4ptÞ3

q exp �RTD�1R

4t

� �
: [23]

Although anisotropic and to a good approximation

Gaussian diffusion does occur in liquid crystals, in

the brain parenchyma anisotropic Gaussian diffusion

embodies a contradiction: where can anisotropy arise

from, if not from the presence of barriers, which

render diffusion non-Gaussian? In this context it is

unphysical in nature, and is to be considered only as

an approximation of the actual diffusion propagator.

When diffusion takes place in presence of barriers,

the diffusion propagator may take a very complex

form, and is not only a function of relative displace-

ment, but of absolute position as well; it is the en-

semble averaging which enables us to consider P(R,
t). Provided that there is no net flux of molecules

(J ¼ 0), one has
R 0
�1 PðX; tÞdX ¼

R1
0

PðX; tÞdX;
since diffusion is a radially symmetric process, one

has P(R, t) ¼ P(�R, t).
Diffusion of water molecules in the brain paren-

chyma takes place in multiple intracellular and

extracellular compartments. In the simplified case of

impermeable cell membranes, intracellular diffusion

is restricted within boundaries in space (i.e., it takes

place in disconnected pores), while extracellular dif-

fusion is hindered by collisions with barriers (i.e., it

takes place in connected spaces). The volume propor-

tions of the intracellular and extracellular compart-

ments are about 80% and 20% respectively (19, 20).
Diffusivity as measured from the motion of mole-

cules in a brain voxel of finite volume in a finite time

interval is determined not only by the properties of

the diffusing medium, by the geometry, and perme-

ability of barriers, but also by measurement condi-

tions such as the diffusion time t: in recognition of

this fact, it is often referred to as apparent diffusivity
Dapp, or as apparent diffusion coefficient. The same

applies to the apparent diffusion tensor Dapp. In liter-
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ature, Dapp and Dapp are sometimes written as D and

D for brevity; this is also the case for the next sec-

tions of this review.

For the case of free diffusion, we have Dapp ¼ D0,

where D0 is the intrinsic diffusivity of the medium,

which depends on temperature T and viscosity Z with

(11)

D0 /
T

Z
: [24]

The intrinsic diffusivity D0 in the intracellular com-

partment is lower than that in the extracellular one

because of higher viscosity.

It is instructive to explore the relationship between

t and Dapp through some limiting cases.

For short t, barriers have a negligible influence,

because the fraction of molecules striking the barriers

is small, hence

lim
t!0

DappðtÞ ¼ D0; [25]

in this limit diffusion is isotropic (16).
In the opposite extreme, t ? ?, hindered and re-

stricted diffusion have different properties.

In the long-time limit (t � a2/D0 for a spherical

pore of diameter a), known as the Markovian regime,
molecules lose memory of their initial position r and

of the diffusional process. For the case of diffusion

restricted in an isolated pore with impermeable and

reflecting boundaries, the propagator assumes the

shape of the pore

Pðr; r0; t ! 1Þ ¼ wðr0Þ; [26]

where w(r0) is the pore shape function, which is ho-

mogeneous within pore boundaries, zero outside, and

for which
R
wðrÞdr ¼ 1; as explained in the seventh

section, the EAP becomes the autocorrelation func-

tion of w(r) (6, 16, 21).
Since the maximum displacement ‘max is set by

the pore boundaries,

lim
t!1

‘ðtÞ � ‘max; [27]

from Eq. [20] we have

lim
t!1

DappðtÞ ¼ 0: [28]

For hindered diffusion the situation is more complex;

it is found experimentally that

lim
t!1

DappðtÞ ¼ Dlong; [29]

where the coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=Dapp

p
� 1 is known as

tortuosity (18, 21).

These simplified long-time limits do not apply in

biological systems for a number of reasons. First,

pores are rarely isolated, and diffusion occurs in

highly connected spaces. Second, they do not

account for the fact that biological membranes are

permeable, and that therefore there is exchange of

water molecules between intracellular and extracel-

lular compartments. A more detailed discussion of

the effects of membrane permeability can be found

in Refs. (19, 20, 22). Third, water molecules may be

actively pumped through membranes as a result of

physiological activity and bulk flow of extracellular

fluid occurs due to cardiac pulsatility. Fourth, inter-

action between membranes and water molecules

causes loss of transverse magnetization due to

dephasing, leading to an apparent absorption effect

(19, 20).
The brain parenchyma is composed of neural and

glial cells, the latter outnumbering the former by a

factor of about 10. In grey matter, the bodies of neu-

ral cells and dendrites are not microstructurally

arranged in a directional manner, resulting in rela-

tively isotropic and homogeneous water diffusion. In

white matter, bundles of axons, long tube-shaped

extensions of the body of neural cells whose purpose

is to conduct electric pulses, have a clear directional

orientation. Glial cells of heterogeneous shape and

size are found in both grey and white matter (23).
As represented in Fig. 1, axons contain microtu-

bules and neurofilaments, two intracellular structures

that run along the axon. In some areas axons are my-

elinated, i.e., have their cell membrane covered by a

fatty substance, known as myelin, whose purpose is

to control the axon’s electrical impedance by its

dielectric properties, in remarkable similarity to

coaxial cables. The permeability of myelin sheaths

Figure 1 Directionally oriented structures in axons.

(Reproduced from (23) with permission from John Wiley

& Sons.) Diffusion is highly anisotropic. Putative determi-

nants of anisotropy include intracellular microtubules and

neurofilaments, the axonal membrane, and the extracellu-

lar myelin sheat.
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for water molecules is very low; myelin is arranged

in concentric layers, separated by spaces in which

water molecules can diffuse (23).
Depending on the location and degree of matura-

tion in the healthy human brain the axonal diameter

varies from about 4 to about 10 mm, the thickness

of the myelin sheath ranges from 500 nm to about

2 mm, and the extraaxonal separation varies from

about 500 nm to about 2 mm (23).
Diffusion within axonal bundles is highly aniso-

tropic: longitudinal diffusivity Dk is 2–5 times larger

than transverse diffusivity D\. The exact microstruc-

tural features which underlie the measured anisotropy

remained matter of debate until recently. Postulated

sources of anisotropy include both intracellular and

extracellular structures: axonal membranes, myelin

sheaths, microtubules, and fast axonal transport (a

physiological mechanism of intracellular transport of

molecules) (23, 24).
One of the first studies involved measurements on

the naturally nonmyelinated olfactory nerve of the

garfish and on the walking leg nerve of the lobster.

As reported by Beaulieu and Allen, the anisotropy ra-

tio (defined as Dk/D\) was found to be similar to that

of myelinated fibers in the same species. Other

groups later studied the spinal cord of rats genetically

engineered in order not to have myelination, and

found that the anisotropy ratio was about 4.5 in con-

trol and 3.5 in mutated rats (23, 24). Beaulieu and

Allen evaluated the contribution of microtubules and

fast axonal transport by comparing excised nerves

stored in a neutral buffer solution with nerves stored

in a buffer containing vinblastine, a compound which

is known to destroy microtubules and to inhibit fast

axonal transport. No significant differences in anisot-

ropy were reported, suggesting that the contributions

of intracellular transport and microtubules are negli-

gible. Potential contributions from magnetic suscepti-

bility differences were evaluated, and found to be

negligible as well (23, 24). One therefore concludes

that diffusional anisotropy in white matter is primar-

ily determined by axonal membranes, with an addi-

tional contribution (on the order of 30%) from mye-

lin sheats.

III. DIFFUSION-WEIGHTED SIGNAL:
BLOCH–TORREY EQUATION AND
CUMULANT EXPANSION

In 1956 Torrey proposed the addition of two terms to

the Bloch equation to account for flow and diffusion

of magnetization

qM
qt

¼ gM� Bþ
� 1

T2
0 0

0 � 1
T2

0

0 0 � 1
T1

0
BB@

1
CCAM

þ
0

0
M0

T1

0
B@

1
CA�r � vMþr � DrM; ½30�

where M represents the magnetization vector, B the

static magnetic field vector, T1 the longitudinal

(spin–lattice) relaxation time, T2 the transverse

(spin–spin) relaxation time, M0 the thermal equilib-

rium magnetization, and where v is the flow velocity,

and D the rank-2 diffusion tensor. The effect of the

diffusion term is to introduce signal attenuation; the

effect of the flow term is to introduce a net phase

shift. This is known as the Bloch–Torrey equation

(25). In the remainder of this section, we shall limit

ourselves to the case of absence of flow.

About a decade later, Stejskal and Tanner intro-

duced the pulsed-gradient spin-echo (PGSE) se-

quence, in which two identical gradient pulses are

inserted on both sides of the p refocusing pulse of a

conventional spin-echo sequence (1, 2).
As represented in Fig. 2, for simplicity and with-

out loss of generality, we shall assume that the diffu-

sion-weighting gradients are rectangular, even

though in practice this condition cannot be realized

due to slew-rate limitations; we shall also take the

time origin to correspond to the time the first gradient

pulse is switched on. The gradient intensity is

referred to as g, the duration as d, and the spacing as

D (which corresponds to the diffusion time t).
While diffusion-weighting gradients can be

applied along any direction, for the sake of simplicity

and without loss of generality, let us consider the x-
axis, and a spin at position x during the first gradient

pulse and at position x0 during the second gradient

pulse.

Owing to the linear relationship between preces-

sion rate and the applied magnetic field, the first

pulse induces dephasing

f1 ¼ g
Z d

0

gx dt ¼ ggdx; [31]

while the second pulse induces dephasing

f2 ¼ g
Z Dþd

D
gx0 dt ¼ ggdx0; [32]

where g is the gyromagnetic ratio in rad s�1 T�1.
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Since the sign of f1 is inverted by the p pulse, we

obtain

f ¼ f2 � f1 ¼ ggdðx0 � xÞ; [33]

this is a simple linear relationship between displace-

ment x0 � x and net dephasing f, which is null for

static spins (1, 2).
It is of central importance to realize that due to

the random nature of displacement x0 � x the dephas-

ing f is a random variable; as a consequence, after

ensemble averaging the result is signal attenuation,

and not a net phase shift.

These equations embed an important assumption,

namely that x and x0 remain constant while the gradi-

ent is on; this corresponds to assuming d is infinitesi-

mally short, and is therefore known as the short gra-
dient pulse (SGP) condition. The formula for net

dephasing becomes more complex if this assumption

is removed (26). Experimentally the effect of violat-

ing this assumption may be reduced by ensuring d ¼
l2/2D, where l represents pore diameter; however,

this is often not possible under in vivo conditions due

to slew-rate limitations. The effect of finite d is

underestimation of s (from Eq. [19]), that is, of dif-

fusivity: Assaf et al. determined in vivo that sweep-

ing d from 4.5 to 72 ms reduced s by a factor of

about two, which corresponds to about 30% for diffu-

sivity (27, 28).
Diffusion-weighted signal can be modeled in

terms of diffusion of magnetization, or in terms of

diffusion of spin-bearing particles. The former

approach involves solving the Bloch–Torrey equa-

tion, the latter is based on cumulant expansion. We

shall review both of them, showing that they are

equivalent for the case of Gaussian diffusion.

Let us start considering diffusion of magnetiza-

tion.

Since in a PGSE sequence a time-dependent diffu-

sion-weighting gradient g(t) (represented by a col-

umn vector) is applied, spins are subject to a mag-

netic field

Bðr; tÞ ¼ ð0; 0;B0 þ gðtÞ � rÞ; [34]

where r is the spin displacement vector.

Substituting in Eq. [30], and considering complex

magnetization m on the transverse plane, we obtain

(1, 2)

qm

qt
¼ �igB0m � m

T2

� igr � gðtÞm þr � ðDrmÞ:

[35]

In order to eliminate the precession and spin–spin

relaxation terms, we can substitute

mðr; tÞ ¼ cðr; tÞ exp � igB0 þ
1

T2

� �
t

� �
; [36]

from which (1, 2)

qc
qt

¼ �igr � gðtÞcþr � ðDrcÞ: [37]

We can further simplify this equation by separating

c(r, t) into an imaginary part, which represents the

solution without diffusion, and a real part, which rep-

resents the attenuation due to diffusion. Given

Figure 2 The PGSE (or, for historical reasons, Stejskal–Tanner) sequence. For the idealised

case of rectangular gradient pulses, g represents gradient intensity, gradient duration, and d gra-

dient spacing, that is, diffusion time (corresponding to the diffusion time t).
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Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



cðr; tÞ ¼ MðtÞ exp �ir �GðtÞð Þ; [38]

where

GðtÞ ¼ g
Z t

0

gðt0Þdt0; [39]

and where the sign of g(t0) is inverted for all gradient

pulses following the p-pulse, we obtain

dM

dt
¼ MðtÞr � Dr expð�ir �GðtÞÞð Þ; [40]

from which (1, 2)

dM

dt
¼ �MðtÞGðtÞTDGðtÞ: [41]

This equation is solved by

MðtÞ ¼ Mð0Þ exp �
Z t

0

Gðt0ÞTDGðt0Þdt0
� �

: [42]

It is convenient to introduce a quantity characterizing

the ‘‘strength’’ of diffusion-weighting

b ¼
Z TE

0

Gðt0ÞTGðt0Þ dt0; [43]

where TE is the echo time of the PGSE sequence;

this quantity is known as the b-value or b-factor, and
has units of s mm�2 (29).

Equation [42] can be rewritten as

s ¼ expð�buTDuÞ; [44]

where u is the unit vector corresponding to the direc-

tion of the diffusion-sensitizing gradient, and the nor-

malized signal s ¼ M(TE)/M(0). This equation is

known as the Stejskal–Tanner equation. In in vivo

experiments the phase of M is discarded in order to

remove physiological contamination; this corre-

sponds to assuming the flow term in Eq. [30] is null.

For isotropic diffusion, Eq. [44] takes the simpler

form

s ¼ expð�bDÞ: [45]

For a PGSE sequence, from Eq. [43] we obtain

b ¼ g2
Z d

0

Z t

0

g dt0
� �2

dt þ g2
Z D

d

Z d

0

g dt0
� �2

dt

þ g2
Z Dþd

D

Z d

0

g dt0 �
Z t

D
g dt0

� �2

dt; ½46�

from which

b ¼ g2d2g2 D� d
3

� �
: [47]

It is important to note that in this derivation the SGP

condition has not been used; the �d/3 term in

Eq. [47] accounts for diffusion occurring while the

gradient is on. Equation 43 is also valid for other

gradient pulse types (30).
Let us now turn to diffusion of spin-bearing par-

ticles. For simplicity, we shall assume that diffusion

is isotropic.

Assuming d is infinitesimally short (SGP condi-

tion), complex signal from one precessing spin can

be written as

c ¼ expðifÞ ¼ expðiggdXÞ; [48]

where f is the net dephasing and X is the displace-

ment along the gradient direction.

Since the signal from a voxel is the ensemble av-

erage of signal from individual spins with displace-

ment X as the random variable, we can write

c ¼ hexpðiggdXÞi ¼
Z 1

�1
expðiggdXÞPðX; tÞdX; ½49�

where in this case c represents complex normalized

signal.

We recognize that, thanks to the presence of the

exponential term, this has the familiar form of the

characteristic function (i.e., of the Fourier transform)

of the one-dimensional propagator P(X, t). Since the

cumulant generating function exists for any distribu-

tion, the logarithm of such a function can be thus

expanded

lnðcÞ ¼
X1
n¼1

kn
ðiggdÞn

n!
; [50]

where kn are the cumulants of the displacement PDF;

this is known as cumulant generating function (31).
We note that this expansion has the form of a Taylor

series in powers of iggd.
The first cumulant k1 is the mean, which, like all

other odd-order terms, is zero if the net flux is zero;

this is equivalent to assuming P(X, t) is even with

respect to X. The second cumulant k2 is the variance.
The k1 and k2 therefore correspond to the first and

second moments, m1 and m2. Rearranging Eq. [19],

we have

k1 ¼ 0

k2 ¼ 2DD:
[51]
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Terminating the expansion at the second term, we

obtain

lnðsÞ ¼ � g2g2d2

2
k2 ¼ �g2g2d2DD � �bD; [52]

for free diffusion, all cumulants except k2 are zero

(32, 33).
Here the �d/3 term is missing, because in Eq.

[48] the SGP condition has been used; cumulant

expansion without this assumption is possible, con-

sidering P(X, t) as the centre-of-mass propagator,
but considerably more complex (34).

Cumulant expansion offers a natural means to

model deviation from Gaussian behavior, introducing

higher cumulants

lnðsÞ ¼ � g2g2d2

2
k2 þ

g4g4d4

4!
k4 �

g6g6d6

6!
k6 þ � � � :

[53]

This expansion is useful at low and intermediate b-
values, at which deviation from the exponential

model becomes appreciable, but has a finite radius of

convergence determined by the zeros, and diverges

for large b-values (33).
To a first approximation, the effect of the presence

of barriers in biological tissues is to render short dis-

placements relatively more probable than long ones

with respect to Gaussian diffusion (35). As depicted

in Fig. 3, this corresponds to increasing the ‘‘peak-

edness’’ of the displacement PDF, which can be

quantified by computing the excess kurtosis, defined
as

K ¼ k4
k22

; [54]

for Gaussian diffusion K ¼ 0. In terms of the

moments, excess kurtosis is defined as K ¼ m4=
m22 � 3 (37).

Substituting k2 from Eq. [51] and rearranging, we

obtain

k4 ¼ Kk22 ¼ 4KD2D2; [55]

from which (35)

lnðsÞ ¼ �bD þ 1
6
b2D2K: [56]

Therefore, direct estimation of diffusional kurtosis is

possible by means of the cumulant expansion, with-

out resorting to reconstruction of the full displace-

ment PDF using QSI or diffusion spectrum imaging

(DSI), introduced in the seventh section; this is some-

times referred to as diffusional kurtosis imaging
(DKI) (35).

In biological tissues, the PDF is generally lepto-

kurtic, that is K > 0, and platokurtosis, that is K < 0,

is not expected.

Figure 3 Microstructure, peakedness and kurtosis. For the case of free diffusion, the displace-

ment PDF is Gaussian, so kurtosis is zero, and the width of the displacement PDF is determined

uniquely by intrinsic diffusivity. As the density of barriers is increased, the displacement PDF

becomes narrower, that is apparent diffusivity decreases, and small displacements become rela-

tively more probable, increasing kurtosis. (Reproduced from (36) with permission from the Euro-

pean Society for Magnetic Resonance in Medicine and Biology.)
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The parallel of Eq. [25] for kurtosis is

lim
D!0

KðDÞ ¼ 0: [57]

In presence of barriers, one expects K to increase

with diffusion time; the relationship remains to be

elucidated both analytically and experimentally. In

biological tissues, leptokurtosis may be induced by

membrane reflectivity, reducing net displacement

with respect to free diffusion, and by membrane

relaxivity, reducing the relative contribution of mole-

cules undergoing long displacements, and may be

attenuated by membrane permeability. Platokurtosis

is not expected as there is no arrangement of barriers

which can render long displacements relatively more

probably than the short ones with respect to free dif-

fusion. As a consequence of the layout of barriers, in

axonal bundles K\ > Kk (38).
For restricted diffusion, as a consequence of Eq.

[27], we have

lim
D!1

fðDÞ � fmax; [58]

where f represents net dephasing (from Eq. [33]),

from which we can write

lim
D!1

sðDÞ ¼ smin: [59]

This simplified limit does not hold in biological tis-

sues due to the permeability and relaxivity of mem-

branes. Although Le Bihan et al. reported that sweep-

ing D from 16 to 79 ms had no significant effect on

apparent diffusivity, later studies employing a biex-

ponential model (introduced in the fourth section)

found that sweeping D in a comparable range

affected the measured slow-diffusing component by

a factor of about two (39, 40).
Nowadays, in vivo diffusion imaging most com-

monly relies on a twice-refocused variant of the

PGSE sequence, which enables to null the effects of

exponentially-decaying eddy currents; although con-

ceptually akin to the PGSE sequence, for this

sequence D is not well-defined (41).
In NMR diffusion measurements, if one assumes

monoexponential signal decay there is an ‘‘optimal’’

b-value between the extremes of zero attenuation and

zero signal minimizing the uncertainty in measure-

ment of Dapp; an accepted rule-of-thumb is to set b ¼
1.1/D, which for the brain translates to b � 1400 s

mm�2 (42). As shown in the fourth section, this em-

pirical rule is invalid when multiple compartments

are considered, in which case stronger diffusion-

weighting is necessary to resolve the relative contri-

bution of each compartment.

It is instructive to consider that water self-diffu-

sion is a good probe of tissue microstructure because,

for the distribution of compartment sizes found in bi-

ological tissues and for the value of D0 � 1 � 10�3

mm2 s�1, ‘2/2D0 � T2; the situation would not have

been so favorable had D0 been lower or ‘ larger, as

longer diffusion times D would have resulted in ex-

cessive loss of signal due to spin–spin relaxation.

IV. DIFFUSION-TENSOR IMAGING WITH
THE RANK-2 TENSOR MODEL

Equation [44] establishes a relationship between the

diffusion-weighted signal s and the diffusion tensor

D, but leaves the problem of how D can be measured

in an MRI experiment. The solution put forward by

Stejskal in 1965 is not applicable in its original form,

because it is for the laboratory frame of reference,

and in an MRI experiment the reference frame of the

diffusion tensor in each voxel is not known a priori,

and the sample cannot be reoriented in the magnet

(2). In 1994 Basser, Mattiello, and Le Bihan showed

that D can be determined solving a linear system of

the form

x21 y21 z21 2x1y1 2y1z1 2z1x1

..

. ..
. ..

. ..
. ..

. ..
.

x2i y2i z2i 2xiyi 2yizi 2zixi

..

. ..
. ..

. ..
. ..

. ..
.

x2N y2N z2N 2xNyN 2yNzN 2zNxN

0
BBBBBBBB@

1
CCCCCCCCA

Dxx

Dyy

Dzz

Dxy

Dyz

Dzx

0
BBBBBBBB@

1
CCCCCCCCA

¼

� 1
b lnðs1Þ

..

.

� 1
b lnðsiÞ

..

.

� 1
b lnðsNÞ

0
BBBBBBBB@

1
CCCCCCCCA
; ½60�

where N is the number of measurements, i ¼ 1, . . . ,
N, si represents normalised signal magnitude for each

measurement, and ui ¼ (xi, yi, zi) are unit vectors cor-

responding to the directions of the diffusion-sensitis-

ing gradients (43).
In virtue of the fact that it is symmetric, the diffu-

sion tensor has six independent elements; therefore,

in principle it could be determined from six diffu-

sion-weighted measurements performed at a b-factor
b with noncollinear directions, and one done at b0

=
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b. However, in practice a larger number of directions,

on the order of 12–30, is necessary in order to obtain

reasonably homogeneous uncertainty; the resulting

linear system can be solved by the least squares

method (42).
The vertices of platonic solids (octahedron, icosa-

hedron, dodecahedron) are frequently chosen as a ba-

sis for gi, and tessellation (i.e., dividing a surface into

elements that have no overlaps and no gaps) may be

used to increase the number of vertices. However,

the best accuracy is obtained when the sampling vec-

tors are equally spaced on the unit sphere; a physical

analogy, proposed by Jones, turns out to be useful: if

each direction is made to correspond to a unit

charged particle constrained on the surface of a

sphere, directions can be optimized in order to mini-

mize the sum of repulsive forces between every pos-

sible pair of particles (42).
In MRI sequences, imaging and spoiling gradients

introduce additional diffusion-weighting; as they are

applied along multiple directions, their effect cannot

be represented by a vector. It turns out to be useful to

introduce a more general entity, the b-matrix

b ¼
bxx bxy bxz

byx byy byz

bzx bzy bzz

0
@

1
A: [61]

In this matrix, which represents a symmetric rank-2

tensor, the diagonal elements subsume interactions

between diffusion-weighting and imaging gradients

in the same direction, and off-diagonal elements sub-

sume interactions in orthogonal directions (30, 43).
Introducing the scalar product for rank-2 tensors

as

A : B ¼
X3
i¼1

X3
j¼1

AijBij; [62]

we can write

lnðsÞ ¼ �b : D; [63]

from which

lnðsÞ ¼ � bxxDxx þ byyDyy þ bzzDzz

�
þ2bxyDxy þ 2bxzDxz þ 2byzDyz

�
: ½64�

The matrix version of Eq. [43] is

b ¼
Z TE

0

Fðt0ÞFðt0ÞT dt0; [65]

with

FðtÞ ¼ g
Z t

0

fðt0Þdt0; [66]

where f(t) represents all gradient pulses including

imaging and spoiling gradients, the sign being

inverted for all gradient pulses following the p-pulse
(39).

Analytical expressions for the b-matrix can be

derived for a given pulse sequence: a method of deri-

vation can be found in (30). Notwithstanding the

resulting limitation on accuracy, the effect of imag-

ing and spoiling gradients is often neglected because

their strength is typically small compared to that of

the diffusion-weighting gradients, simplifying calcu-

lations by enabling to use the scalar b-factor b ¼ bxx

þ byy þ bzz (44). A geometrical method for comput-

ing the b-value and an analogy for the effect of cross

terms can be found in Ref. (44).
The diffusion tensor measured in the laboratory

frame of reference normally has nonzero off-diagonal

elements, and may include negative terms; while

negative diffusivities are per se unphysical, negative

terms may occur as a consequence of the fact that the

frame of reference of the tensor is rotated with

respect to that of the laboratory. Rotation to the

frame of reference of the tensor, in which all off-di-

agonal terms are zero and all diagonal terms are non-

negative (negative eigenvalues are uniquely an effect

of measurement error), is accomplished by means of

diagonalization (Eq. [12]), which may be performed

with the Jacobi iterative method, or with analytical

methods (45). A frequently used alternative is the

singular value decomposition (SVD), which has the

form

D ¼
X3
i¼1

siiui 	 vi; [67]

where 	 is the outer product, defined as u 	 v ¼ uvT,

and where ui and vi are, respectively, the columns of

the 3 � 3 matrices U and V. Since D is positive defi-

nite and Hermitian, the elements of the diagonal ma-

trix s correspond to the eigenvalues li and ui corre-

spond to the eigenvectors ei. An introduction to the

SVD can be found in Ref. (46).
Having sorted the eigenvalues so that l1 � l2 �

l3, the diffusion tensor can be represented by the

ellipsoid

x02

2l1t
þ y02

2l2t
þ z02

2l3t
¼ 1 [68]
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in the reference frame of the eigenvectors e1, e2, e3,

corresponding to x0, y0, z0 (the axes in the reference

frame of the tensor) (14). The surface of this ellipsoid
corresponds to the characteristic length (see Eq. [20])

for a given diffusion time. It is especially important

to note that the surface corresponding to diffusivity

will generally not enclose an ellipsoid, but a peanut-

shaped volume; this is a consequence of the nonlin-

ear relationship between characteristic length and dif-

fusivity (Eq. [20]).

As a consequence of the fact that for diffusion

within an axonal bundle Dk > D\, one can write

drðsÞ
ds

¼ e1 rðsÞð Þ; [69]

where r(s) corresponds to the path of the axonal bun-

dle in space parameterized by the arc length s; as

depicted in Fig. 4, the direction of the principal

eigenvector in each voxel is tangent to the path of

the bundle (47).

It is desirable to extract from the diffusion tensor

field scalar indexes representative of tissue micro-

structure, and invariant to the rotation of the sample

in the scanner. The tensor eigenvalues provide a nat-

ural basis.

The average of the eigenvalues, corresponding to

the directionally-averaged diffusivity, can be written

as

hDi ¼ TraceðDÞ
3

¼ Dxx þ Dyy þ Dzz

3

¼ l1 þ l2 þ l3

3
¼ hli; ½70�

where D is the diffusion tensor measured in the labo-

ratory reference frame. Since the intrinsic diffusivity

of water in the intracellular environment (Di, see the

next section) is lower than that in the extracellular

environment (De), the apparent diffusivity (Dapp, fre-

quently shortened to D as above and as discussed in

the first section) is often interpreted as an inverse in-

dicator of cellular density (14, 48).
It is useful to decompose the diagonalized diffu-

sion tensor into the sum of an isotropic tensor Lm and

a traceless deviatoric tensor Ls

L ¼ Lm þLs ¼ hliIþ ðL� hliIÞ; [71]

where I is the identity matrix; as depicted in Fig. 5,

Ls represents the deviation from isotropic diffusion

(14, 48).
Scalar measures of diffusional anisotropy can be

obtained in a natural way by comparing the magni-

tude of the isotropic tensor Lm with that of the devia-

toric tensor Ls or with that of L. Recalling the scalar

product for tensors (Eq. [62]), for the diagonalized

tensor we have

Figure 4 Tangency of the principal eigenvector. Pro-

vided that the orientation of axons is coherent, the princi-

pal eigenvector (that is, the direction of maximum diffu-

sivity) is tangent to the path of the fibre bundle. The sur-

face of the ellipsoid in this figure corresponds to

characteristic length.

Figure 5 Decomposition of the diagonalised tensor L in isotropic Lm and deviatoric Ls tensors.

The deviatoric tensor may have negative eigenvalues. Anisotropy can be measured comparing

the magnitude of the deviatoric tensor Ls with that of the diagonalised tensor L, or with that of

the isotropic tensor Lm. The surfaces in this figure correspond to diffusivity.
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ffiffiffiffiffiffiffiffiffiffiffiffi
L : L

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

X3
j¼1

K2
ij

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23

q
: [72]

For the isotropic tensor, we have (14, 48)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm : Lm

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
3hli2

q
¼

ffiffiffi
3

p
hli: [73]

For the deviatoric tensor, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls :Ls

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1�hliÞ2þðl2�hliÞ2þðl3�hliÞ2

q
;

[74]

it is easily seen that (Ls: Ls) is three times the var-

iance of the eigenvalues, that isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls :Ls

p
¼

ffiffiffiffiffiffiffiffi
3s2

p
¼

ffiffiffi
3

p
s; [75]

where s is the standard deviation of the distribution

of eigenvalues (14, 48).
In order to obtain a metric of anisotropy, the mag-

nitude of the deviatoric tensor Ls can be compared

with that of the isotropic tensor Lm, leading to the

definition of relative anisotropy (RA), (14, 48)

RA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls :Ls

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm :Lm

p ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls :Ls

p

hli

¼ 1ffiffiffi
3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1�hlið Þ2þ l2�hlið Þ2þ l3�hlið Þ2

q
hli : ½76�

Alternatively, the magnitude of the deviatoric tensor

Ls can be compared with that of the diagonalised

tensor L, leading to the definition of fractional ani-
sotropy (FA) (14, 48),

FA¼
ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls :Ls

p ffiffiffiffiffiffiffiffiffiffiffi
L :L

p

¼
ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1�hlið Þ2þ l2�hlið Þ2þ l3�hlið Þ2

l21þl22þl23

s
: ½77�

In isotropic media, Ls: Ls ¼ 0, therefore FA ¼ 0

and RA ¼ 0; we also note that

lim
l2;l3!0

FA¼
ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21

l21
1�1

3

� �2

þ �1

3

� �2

þ �1

3

� �2
 !vuut

¼1: ½78�

Since it can be shown and it is found experimentally

that FA is less sensitive to eigenvalue noise than is

RA, FA is nowadays more commonly used (49).

The denser an axonal bundle, the more mem-

branes and myelin hinder and restrict diffusion trans-

versally, rendering diffusion more anisotropic: as a

consequence, diffusion anisotropy is considered as a

rough index of axonal density. To the extent to which

denser bundles are assumed to imply stronger ana-

tomical connectivity, anisotropy may be considered

as an indicator of connection strength (14, 48, 50).
Visualizing the direction of the principal eigen-

vector e1 can convey useful information on the layout

of fiber bundles. Besides rendering ellipsoids or other

solids in three dimensions, or using direction field

plots, one can assign each video channel to a compo-

nent of e1 (5, 51). In particular, it is conventional to

have the orientation of e1 control hue and anisotropy

control brightness, as in

Red ¼ je1;xj � FA;
Green ¼ je1;yj � FA;
Blue ¼ je1;zj � FA:

[79]

The corresponding color-map is represented in Fig. 6

(51).
Some examples of the images which can be

obtained with DTI are provided in Fig. 7.

It is instructive to discuss how the shape of the

ellipsoid varies with the eigenvalues l1, l2, l3: since

l1 > l2 > l3, it can be that l1 � l2 � l3, or l1 �
l2 � l3, or l1 � l2 � l3. As depicted in Fig. 8, in

the first case the corresponding ellipsoid is prolate,
that is, it assumes a peanut-like shape. In the second

case, the ellipsoid is oblate, that is, it assumes a pan-

cake-like shape. In the third case, it resembles a

sphere.

It is useful to quantify the degree of ‘‘prolateness,’’

‘‘oblateness,’’ and ‘‘sphericity’’: as introduced by

Westin et al., we can define

cl ¼
l1 � l2

l1

cp ¼
l2 � l3

l1

cs ¼
l3

l1
;

[80]

where cl is known as linear index (LI), cp is known

as planar index (PI), and cs is known as spherical
index (SI) (52). The linear index represents the extent

to which the shape of an ellipsoid resembles that

expected for a single fiber, while the planar index

represents the extent to which it resembles that

expected for two fibers: examples of the resulting

maps are provided in Fig. 9 (52).
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As discussed in the next section, in a typical brain

diffusion MRI experiment a considerable number of

voxels contain multiple fibers with heterogeneous

orientation, a condition usually referred to as intra-
voxel orientational heterogeneity (IVOH) (53). Since
rank-2 tensors can represent only a single directional

diffusivity maximum, least-squares fitting results in

oblate-shaped ellipsoids when more than one direc-

tional orientation is present: in such a case, the direc-

tion of the principal eigenvector e1 conveys no useful

information, and anisotropy indexes from rank-2 ten-

sors are no longer valid indicators of axonal density

(50, 53–55).

V. DIFFUSION IN MULTIPLE
COMPARTMENTS: THE BIEXPONENTIAL
AND GAUSSIAN MIXTURE MODELS

In a typical MRI experiment, voxel size can be

between two and three orders of magnitude larger

than cell bodies and axonal diameter. As a conse-

quence, voxels contain a combination of intra- and

extracellular compartments. Also, they can contain

multiple fibres with heterogeneous orientation. We

shall discuss the two aspects separately.

Let us begin with the first one. A fraction f of vol-
ume corresponds to intracellular spaces. Recalling

the first section, we have De > Di, where De and Di

represent, respectively, intrinsic diffusivity in the

extra- and intracellular compartments.

Modeling signal with

s ¼ f expð�bDsÞ þ ð1� f Þ expð�bDfÞ; [81]

where Ds and Df represent slow and fast diffusion

components such that Df > Ds, we have

lim
D!0

s ¼ f expð�bDiÞ þ ð1� f Þ expð�bDeÞ; [82]

this is known as the biexponential model (56).
It is tempting to expect to the relationships Ds ¼

Di and Df ¼ De to hold in general. This would

embody several assumptions: that the spin–spin

relaxation rate and the concentration of water mole-

cules are equal for the two compartments, that diffu-

sion is Gaussian, that there is no exchange between

the two compartments, and that the relaxivity of

Figure 7 Trace, colourmap, FA, and RA images of an axial brain section. Diffusivity in the

brain parenchyma is relatively homogeneous. The genu and splenium of the corpus callosum

appear red on the colourmap and highly anisotropic on the FA and RA maps; the corticospinal

tract appears blue on the colourmap. From data acquired on a healthy volounteer at 1.5T at Hel-

imed diagnostic imaging sp. z o.o. (Katowice, Poland). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 6 Convention for DTI colour-coding. (Repro-

duced from (51) with permission from John Wiley &

Sons.) Red corresponds to laterolateral, green to dorsoven-

tral (i.e., antero-posterior), and blue to rostro-caudal (i.e.,

head-feet). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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membranes is negligible. While the general validity

of these assumptions is limited, as shown in Fig. 10

it is found that Eq. [81] fits very well experimental

data beyond short diffusion times, accounting for

deviations from the exponential model which are

observed at intermediate and large b-values.
Fitting measurements taken at achievable diffu-

sion times gives values of Dslow in the range of

(0.2–0.5) � 10�2 mm2 s�1, in good agreement with

reported values for intracellular diffusivity; it also

gives values of Dfast in the range (1.0–1.6) � 10�2

mm2 s�1, in agreement with theoretical predictions

taking into account the tortuosity of extracellular

space (40, 57). Furthermore, it has been shown that

under ischemic conditions fslow increases macro-

scopically (56). Although these findings would sug-

gest a correspondence between Ds and Df and the

intra- and extracellular compartments, the model

gives f � 0.2, which is incompatible with known

anatomy, from which one knows that f � 0.8. This

discrepancy highlights that simple interpretation of

Ds and Df in terms of Di and De is generally not pos-

sible; therefore, beyond the D ? 0 limit the biexpo-

nential model becomes essentially a phenomenologi-

cal one (57).
The confounding effect of differences in spin–spin

relaxation rate between the intra- and extracellular

compartments has been found to be negligible (56,
58). It has been shown that at short diffusion times

the two exponential components are related to two

apparent populations of water molecules, correspond-

ing to those that are distant from membranes, and to

those that are likely to interact with membranes dur-

ing the diffusion time, which are associated with

reduced apparent diffusivity and increased relaxivity

(22, 59). At long diffusion times, biexponential decay

arises as diffraction peaks, discussed in the seventh

section, disappear due to medium heterogeneity and

membrane permeability, leading to an apparent quasi

two-compartment behavior (60, 61).
In fact, Schwarcz et al. reported that, since biex-

ponential decay is present in the cold-injured brain

parenchyma after massive membrane disintegration,

and in centrifuged erythrocyte samples characterized

by a negligible extracellular space and no intracellu-

lar organelles, compartmentalization is not a prereq-

uisite for its presence (62).

Figure 9 Linear (cl), planar (cp) and spherical (cs) coef-

ficient maps for the same section shown in Fig. 7. The

genu and splenium of the corpus callosum are associated

with high cl and low cp and cs. Subcortical regions char-

acterised by IVOH are associated with higher cp and

lower cl. Cortical grey matter is associated with low cl
and cp and high cs. From data acquired on a healthy

volounteer at 1.5T at Helimed diagnostic imaging sp. z

o.o. (Katowice, Poland).

Figure 8 Oblate, prolate and spheroidal ellipsoids.

Oblate tensors enable to infer the orientation of a coher-

ently-oriented bundle of axons, plolate tensors occur when

orientational heterogeneity is present and only convey pla-

nar information, spheroidal tensors do not convey any ori-

entational information. Since the surfaces in this figure

correspond to diffusivity, the prolate rank-2 tensor appears

peanut-shaped.

Figure 10 Signal decay from a white matter voxel. The

empty circles represent measurements, the dashed line corre-

sponds to exponential fitting (with D ¼ 0.4� 10�3 mm2 s�1),

the solid line corresponds to biexponential fitting (with

Dslow ¼ 0.1 � 10�3 mm2 s�1, Dfast ¼ 2.0 � 10�3 mm2 s�1,

and fslow¼0.33). The biexponential model fits the mea-

surements considerably better than a single exponential.
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Using Eq. [45], we can write

DðbÞ ¼ � 1

b
ln f expð�bDsÞ þ ð1� f Þ expð�bDfÞ½ �;

[83]

from which

lim
b!1

� 1

b
ln½f expð�bDsÞ þ ð1� f Þ expð�bDfÞ�

� �
¼ Ds ½84�

and

lim
b!0

� 1

b
ln½f expð�bDsÞ þ ð1� f Þ expð�bDfÞ�

� �
¼ fDs þ ð1� f ÞDf : ½85�

These limits show that, assuming a biexponential

model of signal decay, the diffusivity measured from

two points depends on the b-value as a consequence

of the nonlinear function with which diffusivities are

combined: it decreases as the b-value is increased.
Let us now turn to the case of multiple fiber orien-

tations within a voxel.

Such a situation may originate from a number of

topologies: an interface between adjacent axonal

bundles occupying the same voxel due to partial vol-

uming, an actual crossing of the axonal matrices of

multiple bundles, or a single bundle spreading or nar-

rowing with a fan-like structure (50, 63).
In order to explore the properties of diffusion in a

voxel containing multiple fibers with heterogeneous

orientation (a condition referred to as IVOH, as

defined in the previous section), let us consider an or-

thogonal crossing of two bundles, ‘‘a’’ and ‘‘b’’,

aligned, respectively, parallel to the x and y axes. Let

the corresponding diffusion tensors be Da and Db,

and the corresponding ensemble average diffusion

propagators be Pa(R, t) and Pb(R, t).
If f and (1 � f) are the volume fractions corre-

sponding to the two bundles, the probability for a

randomly chosen water molecule to undergo a dis-

placement R can be written as

PðR; tÞ ¼ fPaðR; tÞ þ ð1� f ÞPbðR; tÞ: [86]

Figure 11 shows the plot of displacement probability

as a function of direction, for a given displacement

|R| and time interval t; the axes have arbitrary units.

It can be seen that the maxima of displacement prob-

ability correspond to the directions of orientation of

the fiber bundles (34, 64).

Assuming that signal adds independently, we can

write

sðg; bÞ ¼ f exp �bgTDag
� �

þ ð1� f Þ exp �bgTDbg
� �

; ½87�

from which

Dðg; bÞ ¼ � 1

b
ln f exp �bgTDag

� ��
þ ð1� f Þ exp �bgTDbg

� ��
: ½88�

Figure 11 shows the plot of measured diffusivity

D(g, b) as a function of direction for a given b-value;
the axes have arbitrary units. It is evident that, when

IVOH is present, diffusivity maxima no longer corre-

spond to the directions of orientation of the fiber bun-

dles (53). This is a consequence of the nonlinear

function with which diffusivities are combined, as

opposed to the sum with which displacement proba-

bilities are combined (Eq. [86]). The relationship

between angular diffusivity pattern and underlying

Figure 11 Displacement isoprobability and diffusivity as

a function of direction. Example for e1a ¼ (1,0,0)T,

e2a ¼ (0,1,0)T, l1 > l2 ¼ l3 for both tensors, f ¼ 1/2,

and arbitrary b and . Displacement isoprobability maxima

correspond to bundle orientation, diffusivity maxima do

not. This is a consequence of the fact that diffusivities are

combined with a nonlinear function (Eq. [88]), while dis-

placement probabilities are combined with a linear func-

tion (Eq. [86]).
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layout, although simple for this example with orthog-

onally crossing fibers, is generally complex, and has

been solved analytically only recently (64).
It is instructive to explore how D(g, b) varies with

the b-value. We note that for a direction g such that

gTDag ¼ gTDbg Eq. [88] simplifies to

Dðg; bÞ ¼ gTDag ¼ gTDbg: [89]

For different direction g0, let g0TDag
0 < g0TDbg

0, we
have

lim
b!1

 
� 1

b
ln½f expð�bg0TDag

0Þ

þ ð1� f Þ expð�bg0TDbg
0Þ�
!

¼ g0TDag
0; ½90�

which is akin to the limit in Eq. [84]. As represented

in Fig. 12 for the layout from Fig. 11, the contrast

between the two fibers improves with increasing b-
value; the effect is clearly not specific to the case of

two orthogonally crossing fibers. As a consequence,

large b-values, such that exp(�bD) cannot be trun-

cated to 1 � bD, are needed to resolve multimodal

diffusion.

Equation [87] can be extended to n fiber bundles

sðg; bÞ ¼
Xn

i¼1

fi exp �bgTDig
� �

; [91]

where fi and Di are the volume fractions and diffu-

sion tensors corresponding to the bundles. This is

known as the Gaussian mixture model; while diffu-

sion is assumed to be Gaussian along all directions,

no restriction is placed on the angular pattern. Also,

it is assumed that there is no exchange among fibers,

so that signal adds independently (53).
Because of the presence of the sum of exponen-

tials, a linear relationship between D(g, b) and the

elements of Di cannot be established, hence the least

squares method cannot be applied as in Eq. [60]. The

determination of Di must therefore be treated as an

optimization problem, searching in a space with (7n
� 1) dimensions (i.e. for each fiber, six degrees of

freedom corresponding to the tensor elements and

one corresponding to its volume fraction).

The measurement of diffusivity along a large

number of noncollinear directions is often referred

to as high angular resolution diffusion imaging
(HARDI).

It has been determined experimentally that fitting

Eq. [91] to noisy data is unstable for n > 2, and that

multiple restarts are necessary in order to obtain reli-

able fitting for n ¼ 2 (corresponding to Eq. [87]) (53,
65, 66).

It is instructive to note two facts about Eq. [91].

First, it enables to determine the volume fractions of

the bundles. Second, n has to be assumed a priori; it

can be determined by means of probabilistic methods

(53, 65, 66). The fact that a discrete number of orien-

tations is assumed is an important limitation, since in

the brain IVOH is frequently induced by the presence

of fan-like layouts, which cannot be adequately

described by a finite number of orientations.

While for brevity this section covered the biexpo-

nential and Gaussian mixture models only, more

advanced models do exist. For example, in 2004

Assaf et al. introduced a composite model of hin-

dered and restricted diffusion, known as CHARMED,

in which hindered diffusion is characterized by an

effective diffusion tensor and restricted diffusion is

described by means of the q-space formalism, intro-

duced in the seventh section; although this model

enables more accurate determination of fiber orienta-

tion, the volume fraction discrepancy remains (67).
Analytical modeling of diffusion in the bovine optic

nerve, representing restricted diffusion within axons

and glial cells by means of ellipsoidal and spheroidal

compartments and accounting for membrane perme-

ability, resulted in more realistic predictions of

Figure 12 Relationship between angular diffusivity pattern and b-value. Low b-values do not

enable to resolve multiple fibres; while the diffusivity maxima remain unaltered, the minima

become deeper as the b-value is increased, resulting in improved contrast. For b ? 0, the diffu-

sivity pattern becomes round on the crossing plane.
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microstructural parameters, albeit with limited good-

ness of fit (68).

VI. GENERALISED DIFFUSION
TENSOR IMAGING

In order to remove the limitations stemming from the

inability of the rank-2 tensor model to represent mul-

timodal diffusion in presence of IVOH one may con-

sider higher-order diffusion tensors, as an alternative

to the Gaussian mixture model introduced in the pre-

vious section.

A rank-l (or, equivalently, an order-l) tensor is a

multidimensional array with l dimensions, of which

scalars (l ¼ 0), vectors (l ¼ 1) and matrices (l ¼ 2)

are special cases.

The rank-2 tensor introduced in Eq. [11] has a

mathematical precursor, the dyad product, which can

be written as

B ¼ u 	 v; [92]

where 	 is the outer product, and u and v are vectors;

this is equivalent to

Bij ¼ uivj; [93]

for i, j ¼ 1, 2, 3 (69).
Equations [92] and [93] have a natural generaliza-

tion for l > 2; for instance, for l ¼ 4 we have

D ¼ u 	 v 	 w 	 x; [94]

and

Dijkm ¼ uivjwkxm; [95]

for i, j, k, m ¼ 1, 2, 3 (69).
Clearly, for l > 2 tensors cannot be represented by

matrices: these are frequently referred to as higher-
order (or, equivalently, rank) tensors.

Although diagonalization is not defined for l > 2,

generalized forms of the SVD (Eq. [67]) do exist: the

PARAFRAC decomposition,

D ¼
X3
i¼1

siiiiui 	 vi 	 wi 	 xi; [96]

and the Tucker decomposition,

D ¼
X3
i¼1

X3
j¼1

X3
k¼1

X3
m¼1

sijklui 	 vj 	 wk 	 xm; [97]

given here for l ¼ 4. The former is unique, and yields

a diagonal s, corresponding to the diagonal eigen-

value matrix in Eq. [67]; the latter is not unique, but

yields orthogonal ui, vj, wk, xm (46, 70, 71).
Although higher-order tensors have no obvious

geometrical or physical analogy, they are a useful

formalism for describing deviation from the aniso-

tropic Gaussian propagator (Eq. [23]). Two models

have been proposed: one (sometimes referred to as

GDTI-2), introduced by Ozarslan et al., preserves the

assumption of the radial components of the propaga-

tor being Gaussian, the other one (sometimes referred

to as GDTI-1), introduced by Liu et al., does not (72,
73).

Let us begin exploring the first one, and consider

that for l ¼ 2 we can write

DðgÞ ¼ gTDg ¼
X3
i¼1

X3
j¼1

Dijgigj; [98]

which, as discussed in Ref. (72), has a natural gener-

alization for rank l:

DðgÞ ¼
X3
i1¼1

X3
i2¼1

� � �
X3
il¼1

Di1i2���il gi1gi2 � � � gil ; [99]

where Di1i2���il are the elements of a rank-l tensor.

Analogously to the Gaussian mixture model, while

embodying the assumption that diffusion along any

direction is Gaussian and therefore maintaining the

use of the diffusion coefficient, Eq. [99] does not

place any restriction on the angular pattern (72).
The angular pattern represented by a higher-order

tensor can be visualized by means of a geometrical

analogy, provided by considering the surface parame-

terized by

cðy;fÞ ¼ D
cosðfÞ cosðyÞ
cosðfÞ sinðyÞ

sinðfÞ

0
@

1
A; [100]

which is defined over the unit sphere; for l ¼ 2, this

corresponds to an ellipsoid (Eq. [68]).

As diffusion is antipodally symmetric, one needs

D(g) ¼ D(�g); this condition is met using even rank

tensors.

As a consequence of the fact that multiplication is

commutative

Di1i2���il ¼ Dði1i2���ilÞ; [101]

where (. . .) is the permutation operator; a rank-l dif-
fusion tensor therefore has

NðlÞ ¼ ðl þ 1Þðl þ 2Þ
2

[102]
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unique elements. For example, N(2) ¼ 6, N(4) ¼ 15,

and N(6) ¼ 28; the multiplicity of each element is

given by

m ¼ l!

nx!ny!nz!
; [103]

where nx, ny, nz correspond to the number of times

each unit vector appear corresponding to the element

(69, 72).

As rank is increased the ability to reproduce com-

plex multimodal angular patterns improves; this is

well-evident in the examples for one, two, and three

fibers and l ¼ 2, 4, 6 shown in Fig. 13 (50, 72).
Least-squares fitting of the diffusion tensor (Eq.

[60]) can be easily generalized to arbitrary rank, tak-

ing into account the multiplicity of each element and

rearranging the tensor elements in a vector; for exam-

ple, for l ¼ 4 and the linear system Ax ¼ b,

ai ¼ x4; y4; z4; 4x3y; 4x3z; 4y3x; 4y3z; 4z3x � � � 4z3y; 6x2y2; 6x2z2; 6y2z2; 12x2yz; 12y2xz; 12z2xy
� �

;

x ¼ Dxxxx;Dyyyy;Dzzzz;Dxxxy;Dxxxz;Dyyyx;Dyyyz � � �Dzzzx;Dzzzy;Dxxyy;Dxxzz;Dyyzz;Dxxyz;Dyyxz;Dzzxy

� �T
;

b ¼ �1=b lnðs1Þ � � � � 1=b lnðsiÞ � � � � 1=b lnðsNÞð ÞT; ½104�

where ai are the row vectors of the matrix A, and i ¼
1, . . . , N (72).

Interestingly, as proposed by Ozarslan et al., the

eigenvalue variance-based metrics of anisotropy (FA

and RA, Eqs. [76] and [77]) can be generalized to

higher-order tensors. Unitless variance of the normal-

ized diffusivity can be written as

V ¼ hDNðgÞ2i � hDNðgÞi2; [105]

where (74)

DNðgÞ ¼
DðgÞ
hDðgÞi : [106]

Since liml??sup(V) ¼ ?, it is convenient to remap

the interval [0,?) to [0,1), leading to the definition

of generalized anisotropy (GA):

GA ¼ 1� 1

1þ ðk1VÞeðVÞ
; [107]

Figure 13 Effect of tensor rank on reconstruction of multimodal diffusivity patterns. (Repro-

duced from (50) with permission from John Wiley & Sons.) The rank-2 tensor is an accurate

representation only for the one-fibre case; it is oblate for the case of two crossing fibres, and

spheroidal for the case of three orthogonally crossing fibres. Multiple maxima are revealed ele-

vating rank to four; elevating rank to six removes distortion for the three-fibre case. One should

note that the surfaces in this figure correspond to diffusivity (see Eq. [100]).
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where the exponent

eðVÞ ¼ 1þ 1

1þ k2V
; [108]

and where k1 and k2 are scaling coefficients (74).
Since DN(g) is positive, definite and integrates to

one, an alternative approach is to consider orientation

and not diffusivity as the random variable, and to

consider DN(g) as its PDF:

s ¼ � 3

2p

Z
O

DNðgÞ lnDNðgÞdg; [109]

where s is the differential entropy of the distribution.

Since liml??inf(s) ¼ �?, it is convenient to remap

the interval (�?, ln 3] to [0,1), leading to the defini-

tion of scaled entropy (SE):

SE ¼ 1� 1

1� k3ðln 3� sÞð Þeðln 3�sÞ ; [110]

where k3 is a scaling coefficient (74).
For l ¼ 2, GA is akin to FA. GA and SE are not rank-

invariant, and it has been shown both in simulations and

on the basis of data acquired in vivo that they increase

with rank in regions where IVOH is present (50, 74).
Their relative merits remain to be characterized: while

from a theoretical viewpoint SE may be preferable

since it is not clear why the square of the difference and

not any other power should be considered in the defini-

tion of GA, from a computational viewpoint GA is pref-

erable since the logarithm in the entropy function forces

to resort to numerical integration (74). It is also worth-

while to note that these metrics are valid for any func-

tion defined over the unit sphere.

Let us now turn to GDTI-1.

Fick’s first law for anisotropic diffusion (Eq. [10])

can be written as

Ji ¼ �Dij
qC

qxj
[111]

where i, j ¼ 1, . . ., 3. As discussed in Ref. (73), the
assumption of Gaussian diffusion is embodied in this

proportionality relationship, and may be removed by

introducing higher-order terms:

Ji1 ¼ �Di1i2

qC

qxi2

� Di1i2i3

q2C
qxi2qxi3

� Di1i2i3i4

q3C

qxi2qxi3qxi4

� � � � ; ½112�

analogously, Fick’s second law (Eq. [8]) becomes

qC

qt
¼ Di1i2ri1i2C þ Di1i2i3ri1i2i3C

þ Di1i2i3i4ri1i2i3i4C þ � � � ; ½113�

which is also known as the Kramers–Moyal expan-

sion (73).
Assuming that diffusion is a Markov process, the

higher-order tensors can be related to statistics of the

random displacement (73).
According to this model, signal attenuation can be

written as (73)

lnðsÞ ¼ �bi1i2Di1i2 � ibi1i2i3Di1i2i3 � bi1i2i3i4Di1i2i3i4

� ibi1i2i3i4i5Di1i2i3i4i5 � � � � : ½114�

The magnitude of the signal is determined by the

even-order tensors, which represent antipodally sym-

metric patterns. Its phase is determined by the odd-

order tensors, representing antisymmetric patterns,

which do not occur unless there is net flux of mole-

cules. Physiological activity corrupts the phase of the

signal, forcing to introduce a simplifying assumption

setting odd-order tensors to zero, which is equivalent

to assuming the flow term in Eq. [30] is null.

GDTI-2, in virtue of the assumption of Gaussian-

ity, does not require measurements to be taken at

more than one b-value per direction; this is not the

case for GDTI-1, which is associated with long ac-

quisition times determined by the combination of a

large number of directions and b-values.
In regions of the brain where fibers are coherently

oriented the relationship between anisotropy and axo-

nal density, myelinization, and integrity is strong. In

regions with a more complex orientational layout, the

effect of these factors on anisotropy depends on the

degree of orientational coherence and the inability of

the rank-2 tensor model to represent multimodal dif-

fusion biases measurements of FA and RA to artifac-

tually low values. Minati et al. have recently shown

that elevating rank from 2 to 4 increases GA and SE

in subcortical regions of the corona radiata, along the

superior longitudinal fasciculus, along the radiations

of the genu of the corpus callosum, in peritrigonal

white matter and along the inferior frontooccipital

and longitudinal fascicula, and also in other regions

not affected by IVOH; removing artifactual underes-

timation of anisotropy, GDTI may provide indexes

more realistically representing axonal density and in-
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tegrity than FA and RA, thereby potentially increas-

ing sensitivity to pathological change (50).

VII. SPHERICAL HARMONIC
DECOMPOSITION AND SPHERICAL
DECONVOLUTION

In the tensor decomposition given in the first section,

D ¼ RTLR (Eq. [12]), the rotation matrix and the

tensor were expressed in Cartesian coordinates e ¼
(x, y, z)T, since this is a natural choice determined by

the gradient system. However, diffusion is more suc-

cinctly described in spherical coordinates e ¼ (r, y, f)T.
In this section we shall introduce a complete

orthonormal basis for functions defined over the unit

sphere, the spherical harmonics Ym
l ðy;fÞ, and show

that the associated decomposition, analogous to the

Fourier transform for spherical coordinates, possesses

some properties which are useful to analyze the

angular pattern of diffusivity and signal attenuation.

Physicists and mathematicians tend to use differ-

ent angular conventions for spherical coordinates,

and this is a potential source of confusion. We shall

follow the physicists’ convention and take y as the

colatitudinal or polar coordinate with 0 � y < p, and
f as the longitudinal coordinate with 0 � f < 2p.

Spherical harmonics Ym
l ðy;fÞ are continuous,

bounded, complex functions of the angular coordi-

nates y and f; introduced by Heine in 1881, they are

frequently encountered in physics, for example as

eigenfunctions of angular momentum operators in

quantum mechanics (75).
They are defined, for order l ¼ 0, . . . , ? and

degree m ¼ �l, . . ., l, as

Ym
l ðy;fÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl � mÞ!
ðl þ mÞ!

s
Pm

l ðcos yÞ expðimfÞ;

[115]

where Pm
l ðxÞ are the Legendre associated polyno-

mials, (75)

Pm
l ðxÞ ¼

ð�1Þ2

2ll!
ð1� x2Þm=2 dlþm

dxlþm
ðx2 � 1Þl: [116]

The spherical harmonics are related to the rotation

matrices for spherical tensors, known as Wigner rota-
tion matrices, having the form

Dl
m0ða; b; gÞ


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

r
Ym

l ðb;aÞ; [117]

the elements of the rotation matrices for rank l spher-
ical tensors with second index equal to zero are pro-

portional to the spherical harmonics (76).
For the purpose of decomposing the real-valued

diffusivity and signal magnitude functions, we shall

use real-valued linear combinations of the complex-

valued Ym
l ðy;fÞ, defined as

Sm
l ðy;fÞ ¼

1ffiffiffi
2

p Ym
l ðy;fÞ þ Y�m

l ðy;fÞ
� �

S0
l ðy;fÞ ¼ Y0

l ðy;fÞ

S�m
l ðy;fÞ ¼ 1

i
ffiffiffi
2

p Ym
l ðy;fÞ � Y�m

l ðy;fÞ
� �

;

[118]

for order l ¼ 0, . . . ,? and degree m ¼ �l, . . . ,
l (75).

As discussed in Ref. (77), these real combinations

enable to expand D(y, f) in a Laplace series,

Dðy;fÞ ¼
X1
l¼0

Xl

m¼�l

almSm
l ðy;fÞ: [119]

As shown in Fig. 14, the real combinations of the

spherical harmonics have two interesting properties.

First, even-order harmonics are antipodally symmet-

rical, and odd-order harmonics are antisymmetrical.

Second, S0
0ðy;fÞ corresponds to a sphere, Sm

2 ðy;fÞ
for m ¼ �2, . . ., 2 have a single directional maxi-

mum (i.e., a direction u for which D(u) ¼ D(�u) ¼
Dmax), Sm

4 ðy;fÞ for m ¼ �4, . . ., 4 have two direc-

tional maxima, and higher-order harmonics have an

increasing angular frequency (77).
The coefficients alm in Eq. [119] can be deter-

mined with

alm ¼
Z 2p

0

Z p

0

Dðy;fÞSm
l ðy;fÞ sin ydydf; [120]

which is known as the spherical harmonic decompo-
sition (SHD), and which is analogous to the Fourier

transform in spherical coordinates (77).
When signal magnitude is considered, and the diffu-

sion propagator is therefore assumed to be antipodally

symmetric, in the absence of noise all odd-order coeffi-

cients are zero. For isotropic diffusion, only a00 is non-
zero. For monomodal diffusion (i.e., a single fiber) only

a00 and a2m for m ¼ �2, . . ., 2 are nonzero, because

higher-order harmonics have multiple directional max-

ima, and it can be shown that their SHD coefficients

evaluate to zero for monomodal diffusivity patterns; for
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multimodal diffusion, the contribution of higher-order

terms increases with angular frequency (77).
Direct computation of alm from Eq. [120] results

in a large computational load if interpolation and nu-

merical integration are used, and poor accuracy if

integration is replaced by summation. A more con-

venient approach is computation of alm in matrix

form. Let d be the vector of diffusivity measurements

with di ¼ D(yi, fi) for i ¼ 1, . . ., N, j(l, m) ¼ l2 þ l
þ m be a unique integer indexing each spherical har-

monic, and h be the vector of decomposition coeffi-

cients with hj(l,m) ¼ alm for j ¼ 0, . . ., j(lmax,lmax).

Then one can write

h ¼ ðX
TXÞ�1
X
Td; [121]

where X with Xijðl;mÞ ¼ Sm
l ðyi;fiÞ is a N � j(lmax,

lmax) matrix (78).
Spherical harmonics are a convenient basis for

interpolation in spherical coordinates; additionally,

they enable to remove a fraction of measurement

noise by forcing odd-order terms to be null.

It has been shown that for the case of a single fiber

the polar and longitudinal angles of the fiber can be

derived from the second-order coefficients a2m for m
¼ �2, . . ., 2 (77).

The relationship between harmonic order and

angular frequency provides a convenient means to

characterize deviation from monomodal diffusion.

Writing the signal magnitude for a given harmonic

order l as

WDðlÞ ¼
Xl

m¼�l

a2
lm; [122]

the fiber multiplicity index (FMI) introduced by

Frank et al., can be formulated as

FMI ¼

P
l

WDðlÞ

WDð2Þ
; [123]

for even l � 4 (77).
Equation [123] enables to detect IVOH by thresh-

olding the FMI; an alternative, put forward by

Alexander et al., is to use analysis of variance

(ANOVA) to assess whether increasing harmonic

order significantly changes D(y, f) reconstructed

Figure 14 Plots of the real combinations of the spherical harmonics for l ¼ 0 . . . 4. Black cor-

responds to negative values. Even-order harmonics are antipodal symmetric, odd-order harmonics

are antisymmetric. The angular frequency increases with order.
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from Eq. [119] (78). Zhan et al. reported that maps

of WD(0), WD(2), and WD (4) exhibit strong consis-

tency with DTI-derived mean diffusivity hDi, linear
index cl and planar index cp (79).

Another application of SHD is direct reconstruc-

tion of fiber orientation by means of spherical decon-

volution. Normalized signal S(y, f) from a popula-

tion of crossing fibers can be naturally written as a

convolution in spherical coordinates

Sðy;fÞ ¼ RðyÞ � Fðy;fÞ; [124]

where F(y, f) is the normalized fiber orientation
density (or distribution) function (ODF). Conceptu-

ally, F(y, f) is akin to c(u) introduced in the next

section, also referred to as ODF, although the two

methods will generally give different estimates. R(y)
is the response function for a single fiber aligned

with the z-axis, which is assumed to be axially sym-

metric (80).
As discussed by Tournier et al., spherical decon-

volution can be reduced to a set of matrix operations.

Let sn be the vector of nth order SHD coefficients for

S(y, f), and fn be the vector of nth order SHD coeffi-

cients of F(y, f). Then one can write

sn ¼ Rnfn; [125]

where Rn is a (2n þ 1)(2n þ 1) matrix, representing

the nth order rotational harmonic decomposition of

R(y). The SHD coefficients of F(y, f) can therefore

be obtained by inverting Rn. Since F(y, f) is antipo-
dally symmetric, only even orders have to be consid-

ered; R(y) can be estimated directly from a high-ani-

sotropy voxel, assuming that it is does not differ

among bundles (80).

VIII. DSI AND Q-BALL IMAGING: THE
FOURIER RELATIONSHIP AND THE
FUNK–RADON TRANSFORM

Let us recall Eq. [49], which establishes that for a

population of spins and a diffusion time t

cðq; tÞ ¼ = PðX; tÞ½ �; [126]

where q ¼ ggd, and where the right-hand side is the

Fourier transform of the one-dimensional propagator

P(X, t).
The relationship between displacement and

dephasing, expressed in Eq. [33] for one dimension,

can be extended to three dimensions:

f ¼ g
Z d

0

g � rdt � g
Z Dþd

D
g � r0dt ¼ gdg � R;

[127]

where R ¼ r0 � r, and where, as a consequence of

the SGP condition, g and r are time-independent vec-

tors.

Since the Larmor relationship is linear, the

dephasing PDF p(f), corresponding to P(X, t) in one

dimension, corresponds to P(R, t) in three dimen-

sions; it follows that the Fourier relationship can be

naturally extended to

cðq; tÞ ¼
Z

expðiq � RÞPðR; tÞdR ¼ = PðR; tÞ½ �;

[128]

where q ¼ gdg is known as the reciprocal space vec-
tor (16, 21, 81).

Reconstruction of P(R, t) is possible by means of

the inverse Fourier transform of the complex signal

measured at a diffusion time t (one should note that

in this context þi is used for I and �i for I�1),

PðR; tÞ ¼
Z

expð�iq � RÞcðq; tÞdq

¼ =�1 cðq; tÞ½ �; ½129�

which is free from a priori assumptions about the

propagator (26, 27).
If the EAP is antipodally symmetric, that is, if

there is no net flux of molecules, imaginary terms in

the Fourier transform sum up to zero; in this case,

when ensemble average signal is considered, neglect-

ing the effect of noise no information is lost by tak-

ing signal magnitude s ¼ |c| (34)

PðR; tÞ ¼ =�1 sðq; tÞ½ �: [130]

Equation [127] in its current form holds outside the

SGP condition if R is considered as d-averaged dis-

placement, and P(R, t) as the centre-of-mass propa-
gator (26, 27). It has been shown experimentally that

this results in underestimation of displacement; vary-

ing d from 4.5 to 72 ms was reported by Assaf et al.

to result in net displacement changing by a factor of

about 2 (28).
If the SGP condition is met and the complex sig-

nal is considered, reconstruction of P(R, t) by means

of the Fourier transform is referred to as QSI, other-

wise it is referred to as DSI; due to gradient slew-rate

limitations and phase contamination, only DSI can be

applied in vivo (34, 61).
Two forms of QSI/DSI are possible: three-dimen-

sional reconstruction of the whole propagator with

Eq. [129] from measurements taken on a Cartesian

lattice, and one-dimensional reconstruction of indi-

vidual radial components of the propagator along
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each sampling direction with Eq. [126]; clearly, in

both cases the measured displacement PDF depends

on the diffusion time t (61, 82).
In a QSI/DSI experiment the hardware resolution

is determined by 2/max q; stronger gradients enable

to encode higher spatial frequencies. The displace-

ment field of view max |R| is determined by radial

sampling density 2/Dq. The choice of d and max q
implies a trade-off between resolution, achieved

maximizing max q, and accuracy, achieved minimiz-

ing d; the scale of the compartment to probe sets the

minimum value for max q (16).
It is instructive to consider two limiting cases.

P(R, t ? 0) is an infinitely narrow Gaussian iso-

tropic propagator (Eq. [22]). Considering restricted

diffusion in an isolated pore with nonrelaxing and

impermeable barriers, from Eq. [26] we have

PðR; t ! 1Þ ¼
Z

wðrþ RÞwðrÞdr; [131]

since in the Markovian regime r(r) ¼ w(r); we note

that this is the autocorrelation function of molecular

density (9, 16, 21, 81). By virtue of the Wiener–

Khinchin theorem it follows that

PðR; t ! 1Þ ¼
X
pores

Z
wðrþ RÞwðrÞdr

¼ =�1
X
pores

j= wðrÞ½ �j2
 !

; ½132�

which enables direct inference of the average struc-

ture function from the EAP (16, 21, 81). In biological

tissues the applicability of this formula is limited by

surface relaxation, finite permeability, and high pore

connectivity; for example, Sukstanskii et al. have

shown that the EAP measured from a regular array of

permeable membranes exhibits deceiving multicom-

partmental features (22, 61).
As a consequence of the properties of the Fourier

transform, the diffusion-weighted signal correspond-

ing to a pseudoperiodic array of pores exhibits multi-

ple peaks: with an optical analogy, this phenomenon

is termed diffusion diffraction (83). Pictorially, one
can think of this phenomenon as of molecules being

reflected from the barriers, thus having a higher prob-

ability of returning to their initial position, therefore

causing signal not to decay monotonically as a func-

tion of q (61). These diffraction peaks enable to

extract microstructural information on pseudoperi-

odic samples, a technique known as diffusion spec-
troscopy. In biological tissues these peaks are gener-

ally not observed, due to microstructural heterogene-

ity, and to the permeability and relaxivity of barriers

(61).
Figure 15 shows some examples of the relation-

ship between signal decay s(q, t) and displacement

probability P(X, t) for one dimension.

Notwithstanding the fact that in biological tissues

diffraction peaks are not visible and that the relation-

ship between microstructure and the EAP is weak, it

is possible to extract ‘‘apparent’’ microstructural in-

formation. For example, one may generate maps of

the probability of zero displacement P(0, t), and of

displacement at half-height 2P(X1/2, t) ¼ P(0, t).
The former can be interpreted as an indicator of

restriction, the latter as an inverse indicator of restric-

tion. Known as displacement imaging, this technique
has been shown to be highly sensitive to pathological

changes in myelinization, demyelinated areas being

characterized by smaller P(0, t) and larger X1/2, due

to loss of highly impermeable myelin sheaths and

axonal damage (28, 84).

Figure 15 Signal decay s(q, t) (a), and correspoding one-dimensional propagator P(X,) (b).

(Reproduced from (84) with permission from John Wiley & Sons.) The wider the displacement

PDF, the steeper signal decays as a function of q.
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Recalling from the fourth section that, as opposed
to diffusivity, displacement probability is maximum
along the directions of fiber orientation, as depicted
in Fig. 16 one may reconstruct the ODF by radial
projection of the EAP for suitably large values of t

cðuÞ ¼ k

Z max jRj

0

Pðru; tÞf ðrÞdr; [133]

where u is a unit vector, k is a normalization coeffi-

cient, and f(r) is a weighting function emphasizing

long displacements, often chosen to be f(r) ¼ r2 (34).
Equation [133] discards the radial information

contained in the propagator. In fact, since displace-

ment isoprobability is maximum along the directions

of fiber orientation for a range of values of r, one
need not integrate over r and, for suitably chosen

values of r, the ODF could be approximated with

cðuÞ ¼ kPðru; tÞ; [134]

which corresponds to sampling at a single q-value,
q0 ¼ 1/r (85, 86). However, the Fourier transform

cannot be calculated with a single q-value. In 2003,

Tuch et al. showed that the Funk–Radon transform
(FRT), which is a generalization of the Radon trans-

form to spherical coordinates, can be used to approx-

imate c(u) from measurements taken on a sphere

corresponding to a single q-value. The resulting tech-

nique, known as q-ball imaging (QBI), provides a

drastic reduction in acquisition time when compared

to sampling on a Cartesian lattice, making in vivo

applications possible (85, 86). Due to its high rele-

vance to in vivo brain imaging, we shall present a

complete derivation of the relationship between the

FRT and radial projection of the propagator.

The FRT, subsequently written as S[ ], is a trans-

form from the sphere to the sphere, assigning to a
point on the unit sphere the path integral over the

corresponding equator (87)

S f ðuÞ½ � ¼
Z
v?u

f ðvÞdv ¼
Z

S

f ðvÞdðv � uÞdv: [135]

Adapting from (85), for convenience we shall use cy-
lindrical coordinates for s(qr, qy, qz) and P(r, y, z)
(t is omitted for brevity); without loss of generality,

we shall take u to be the z direction. The FRT at a

wavevector radius q0 on the z0 ¼ 0 plane can be

written as

Sq0 ½s� ¼
Z 1

�1

Z 2p

0

Z 1

0

sðqr; qy; qzÞdðqzÞ

� dðqr � q0Þqrdqrdqydqz: ½136�

From the properties of the Delta function, we have

Sq0 ½s� ¼
Z 2p

0

Z 1

0

sðqr; qy; 0Þdðqr � q0Þqrdqrdqy:

[137]

From Parseval’s theorem we haveZ 1

�1
f ðxÞg
ðxÞdx ¼

Z 1

�1
=½f �=�1½g�dk; [138]

which can be extended to cylindrical coordinates.

Let f ¼ s(qr, qy, 0) and g ¼ d(qr � q0), we can

write

Sq0 ½s� ¼
Z 2p

0

Z 1

0

= sðqr; qy; 0Þ½ �=�1 dðqr � q0Þ½ �rdrdy:

[139]

Figure 16 From fibre layout to ODF. The Fourier transform enables to recover the propagator;

the displacement isoprobability maxima coincide with fibre orientation. The radial projection

provides a value which is a function of angle only.

Since q0 > 0, we have

=�1 dðqr � q0Þ½ � ¼ q0
Z 2p

0

e2piq0r cosðqy�yÞdqy:

[140]

Substituting a ¼ qy � y, we can rewrite this integral

as

=�1 dðqr � q0Þ½ � ¼ q0 R 0
�y e2piq0r cosada

�
þ
R 2p
0

e2piq0r cosada�
R 2p
2p�y e2piq0r cosada

	
: ½141�
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Substituting b ¼ a � 2p in the last right-hand side

term, we obtain

=�1 dðqr � q0Þ½ � ¼ q0
Z 2p

0

e2piq0r cosada: [142]

Recalling a definition for the 0th-order Bessel function,

J0ðxÞ ¼
1

2p

Z 2p

0

eix cos ydy; [143]

we come to

=�1 dðqr � q0Þ½ � ¼ 2pq0J0ð2pq0rÞ: [144]

Applying the central slice theorem to the Fourier

transform of s(qr, qy, 0) in Eq. [139] gives us that

= sðr; y; 0Þ½ � ¼
Z 1

�1
Pðr; y; zÞdz: [145]

Substituting Eqs. [144] and [145] in Eq. [139], we

obtain

Sq0 ½s� ¼ 2pq0
Z 1

�1

Z 2p

0

Z 1

0

Pðr; y; zÞJ0ð2pq0rÞrdrdydz:

[146]

If we assume that the mass of J0 is concentrated at

the origin, that is J0(x) ¼ d(x), we come to

Sq0 ½s� ¼ 2pq0
Z 1

�1

Z 2p

0

Z 1

0

Pðr; y; zÞdð2pq0rÞrdrdydz

¼
Z 1

�1

Z 2p

0

Z 1

0

Pðr; y; zÞdðrÞrdrdydz; ½147�

which is the radial projection of P(r, y, z) along the

z-axis; this assumption introduces error, in the form

of blurring of the reconstructed angular pattern.

Therefore, summing over a circle in Fourier space

corresponds to the radial projection in displacement

space.

According to the Rayleigh definition, the resolu-

tion is given by the radial distance of the first zero-

crossing of the Bessel function, Dr � 0.383/q0, which
is controlled by the radius of the sampling sphere (86).

The QBI approximation of the ODF is given by

cðuÞ � 1

Z
S sðqÞ½ �; [148]

with normalization coefficient

Z ¼
Z

S

S sðqÞ½ �dq: [149]

Analogously to diffusivity patterns, c(u) can be rep-

resented with a parameterized surface (Eq. [100]).

Since peaks corresponding to fiber orientation are

superimposed to a large baseline, for visualization

purposes a rescaling of the form

c0ðuÞ ¼ cðuÞ �min cðuÞð Þ
max cðuÞð Þ �min cðuÞð Þ [150]

is introduced (86).
As shown in Fig. 17, direction-coded color-maps

can be obtained from the direction maximizing c(u)
in each voxel.

QBI reconstruction is computationally very effi-

cient thanks to the fact that the FRT and interpolation

can be formulated as multiplication of the signal vec-

tor by a precomputed transformation matrix; a

detailed presentation of the algorithm can be found

in Ref. (86).

IX. SUMMARY

Diffusion can be modeled by means of diffusion

coefficients and diffusion tensors if the displacement

PDF is assumed to be Gaussian, or, more generally,

by means of the formalism of propagators. The statis-

tical properties of self-diffusion of water molecules

in the brain parenchyma are to a large extent deter-

mined by cell membranes and myelin sheaths. While

the relationship with microstructure can be very com-

plex, some simplified limits were presented. Their

validity is limited due to membrane permeability and

relaxivity, and due to physiological activity.

The diffusion-weighted signal can be modeled in

terms of diffusion of magnetization (by means of the

Bloch–Torrey equation) or in terms of diffusion of

spin-bearing particles (by means on the cumulant

expansion). For the case of Gaussian diffusion, both

lead to the Stejskal–Tanner equation. Cumulant

expansion provides a straightforward framework to

account for deviation from Gaussian behavior by

introducing higher-order cumulants.

Rank-2 DTI builds on the assumption of monomo-

dal Gaussian diffusion. By decomposing diagonal-

ized tensors in isotropic and deviatoric components,

rotation-invariant measures of diffusion anisotropy

can be obtained. Assuming that the direction of max-

imum diffusivity is tangent to the path of coherently-

oriented axonal bundles enables to visualize their ori-

entation through direction-coded color maps. In

regions where IVOH is present, rank-2 tensors take

an oblate shape, preventing from resolving orienta-

tion and leading to underestimation of anisotropy.
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It is found that the decay of the diffusion-

weighted signal is well fit by a biexponential model.

Although tempting, the interpretation of the two

components in terms of intra- and extracellular com-

partments is generally not possible. Evidences of this

are unphysiological predictions of the volume frac-

tion, and the fact that compartmentalization is not a

prerequisite for biexponential decay.

When multiple heterogeneously oriented fibers are

considered, it is found that while the maxima of dis-

placement isoprobability correspond to fiber orienta-

tion, diffusivity maxima do not. On the basis of the

assumption of independent addition of signal, a

Gaussian mixture model can be set up. While reveal-

ing fiber orientation and volume fraction, such a

model has the major limitations of requiring to

assume a priori a discrete number of orientations,

and of leading to unstable fitting for more than two

orientations.

The concept of diffusion tensor can be general-

ized to arbitrary rank, either by preserving the

assumption of Gaussianity and using a single ten-

sor to represent the angular diffusivity pattern, or

by expanding Fick’s laws in series of tensors of

increasing rank.

The variance-based definition of anisotropy intro-

duced for the rank-2 tensor can be generalized to any

function defined on the unit sphere; it is also possible

to consider orientation as the random variable and

normalized diffusivity as its distribution. This pro-

vides two measures of anisotropy applicable to

higher-order tensors.

Decomposition of angular diffusivity patterns in

terms of real combinations of the spherical harmon-

ics enables to separate isotropic, monomodal, and

multimodal components. It enables to detect the pres-

ence of multiple fibers by means of indexes of fiber

multiplicity (FMI) or statistical tests. Reconstruction

of the ODF by means of deconvolution of the diffu-

sion-weighted signal can be written as a series of ma-

trix operations computing the SHD coefficients of the

ODF from those of the signal.

The Fourier relationship between signal and dis-

placement at the basis of cumulant expansion can be

naturally extended to three dimensions. This enables

to reconstruct the EAP without a priori assumptions.

As long as one assumes that no net flux occurs, no in-

formation is lost by considering the signal magni-

tude. In biological tissues, diffraction peaks are nor-

mally not observed and the relationship between the

EAP and microstructure is made weak by membrane

permeability and relaxivity. Nevertheless, measure-

ment of the zero-displacement probability and of dis-

placement at half-height can provide information on

‘‘apparent’’ microstructure.

The ODF can be reconstructed by means of radial

projection of the propagator, or, more efficiently, by

means the FRT, which can be applied to measure-

ments taken on a sphere rather than on a Cartesian

lattice. It can be shown that the FRT, which can be

written in matrix form, is equivalent to the radial pro-

jection of the propagator, to the extent to which the

mass of a zero-order Bessel function is assumed to

be concentrated at the origin.

Figure 17 An example of Q-ball colour-map and ODF. Although the colour-map bears a major

similarity with those obtained with rank-2 DTI, QBI reveals crossing of commissural (red) and

association (green) fibres (1), and of association (green) and projection (blue) fibres (2). From

data acquired on a healthy volounteer at 1.5T at Helimed diagnostic imaging sp. z o.o.

(Katowice, Poland). [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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