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“FMRI connectivity” encompasses many areas of research, including resting-state networks, biophysical
modelling of task-FMRI data and bottom-up simulation of multiple individual neurons interacting with
each other. In this brief paper I discuss several outstanding areas that I believe will see exciting developments
in the next few years, in particular concentrating on how I think the currently separate approaches will in-
creasingly need to take advantage of each others' respective complementarities.
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Introduction - brief review of concepts

Much of the neuroimaging community is shifting emphasis from
blobology (functional specialisation/segregation) towards connectology
(functional integration). While non-MRI modalities such as MEG are
showing increasing promise in aiding this, FMRI continues to be a major
rights reserved.
tool in the quest for inferring “the” brain networkmodel. A large amount
of FMRI connectivity research centres around the development, validation
and interpretation of new analysis methods, with a plethora of different
approaches appearing, each with its own limitations and promise, and
each potentially asking a different question regarding neural connectivity.

A general meaning ascribed to the phrase FMRI connectivity is the
study of interactions between distinct brain areas using FMRI. As soon as
this is made explicit, it becomes obvious that FMRI connectivity covers
many areas, including resting-state networks, DCM, graph theory and
the connectome — and yet there is sufficient (and increasing) interplay
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between such areas, that hopefully it can make sense to discuss several
of them together in the general context of “connectivity”. This brief
paper does not give a detailed retrospective review, as it is supposed
to be a future-looking paper, and there are several relevant reviews by
other authors in this special issue, in addition to excellent recent re-
views elsewhere (e.g., (Friston, 2011)). In the remainder of this section
I recapitulate some basic networkmodelling concepts, and in the rest of
the paper discuss several outstanding areas for future work that I per-
sonally think are important and exciting.

Network modelling via nodes and edges; functional vs. effective connectivity

The mapping of the brain's networks often starts by identifying a
set of “nodes”, and then attempts to estimate the set of connections
or “edges” between these nodes, based on an analysis of the FMRI
timeseries associated with the nodes. In some cases, the directionality
of these connections is estimated, in an attempt to show how infor-
mation flows through the network.

There are many ways to define network nodes from FMRI; nodes are
often defined as spatial regions of interest, for example, as obtained
fromtask-FMRI activation or frombrain atlases. Alternatively, parcellation
via a data-driven clustering of the FMRI data itself (e.g., hierarchical clus-
tering or independent component analysis) can be run to define clusters
or components (spatial maps with associated timecourses), which can
be considered network nodes, although the extent to which this makes
sense depends on the number of components extracted (e.g., the ICA di-
mensionality). If a low number of components is estimated (Kiviniemi
et al., 2003), then it makes more sense to think of each component itself
as a “network”. This will often include several non-contiguous regions,
all having the same timecourse (according to themodel), and hencewith-
in-component network analysis is not possible without further
processing, such as splitting the components and re-estimating each
resulting node's timeseries. Furthermore, between-component network
analysis is quite possibly not very meaningful, as each component will
in itself constitute a gross, complex functional system. However, if a
higher number of components is estimated (Kiviniemi et al., 2009),
these are more likely to be smaller, isolated regions (parcels), which can
more sensibly be then considered as nodes for use in network analysis.

Once the nodes are defined, each has its own associated timecourse
(e.g., the average timeseries from all voxels within the node). These are
then used to estimate the connections (edges) between nodes— in gen-
eral, the more similar the timecourses are between any given pair of
nodes, themore likely it is that there is a functional connection between
those nodes. Of course, correlation (between two nodes' timeseries)
does not imply either causality (in itself it tells one nothing about the
direction of information flow), or even whether the functional connec-
tion between two nodes is direct (there may be a third node “in-be-
tween” the two under consideration, or a third node may be feeding
into the two, without a direct, or even causally-indirect, connection
existing between them). This distinction between simple correlation
and trying to estimate the underlying, direct, causal connections (some-
times referred to as the distinction between functional and effective con-
nectivity respectively (Friston, 1994)1) is very important if one cares
1 Ifind the terms functional and effective connectivity a little unfortunate, becauseneither is
unambiguously self-explanatory. I think there would already have been a bigger clash be-
tween the worlds of functional and effective connectivity if it had not been the case that
many working on functional connectivity have been working with resting-FMRI, while the
majority of those heading towards effective connectivity have largely been working with
task-FMRI. However, these two worlds are starting to overlap, which will make for exciting
science and debate. An amusing indication of the current polarities present amongst
respected connectivity-related researchers is given by opposing comments on a draft of this
paper by two of my closest colleagues — compare Dr A's (over-confident?) “Answer to the
debate: effective connectivity is the only correct thing to do. Functional connectivitymethods
may be useful for finding uninterpretable biomarkers or initialising effective connectivity ap-
proaches. Job done.” against Dr B's (over-grumpy?) “With respect to effective connectivity
the main issue I have is that it is not even clear what the… DCM parameters refer to. There
is no biophysical interpretation of the parameters…”
about the underlying biological network. For example, in a 3-node net-
work A→B→C, with distinct external (e.g., sensory) inputs feeding into
all nodes, all three nodes' timeseries will be correlated with each other,
so the “network estimation method” of simple correlation will incor-
rectly estimate a triangular network. However, another simple estima-
tion method, partial correlation, can correctly estimate the direct
connections (though not their directionalities); this works by taking
each pair of timeseries in turn, and regressing out the third2 from
each of the two timeseries in question, before estimating the correlation
between the two. If B is regressed out of A and C, there will no longer be
any correlation between A and C, and hence the spurious third edge of
the network (A–C) is correctly eliminated.3

The question of directionality is also often of interest, but in gener-
al is harder to estimate than whether a connection exists or not
(Smith et al., 2011). For example, many methods, such as the two
mentioned earlier (full correlation and partial correlation) give no di-
rectional information at all. The methods that do attempt to estimate
directionality fall into a few general classes. One class is lag-based
(more generally, multivariate autoregressive modelling (Valdes-Sosa
et al., 2011)), the most common example being Granger causality
(Granger, 1969). Here it is assumed that if one timeseries looks like
a time-shifted version of the other, then the one with temporal
precedence caused the other, giving an estimation of connection di-
rectionality. A second class (e.g., Bayes nets and structural equation
modelling) is based on the idea of conditional independence, and (for
FMRI) often starts just by estimating the (zero-lag) covariance matrix
between all nodes' timeseries (hence such methods are based on the
same raw measure of connectivity as correlation-based approaches —
but attempt to go further in utilising this matrix to draw more com-
plex inferences about the network). Such methods may look at the
probability of pairs of variables conditional on sets of other variables;
for example, Bayes net methods (Ramsey et al., 2010) in general esti-
mate directionality by first orienting “unshielded colliders” (paths of
the form A→B←C, where a node is fed into by the others) and then
drawing inferences based on algorithm-specific assumptions regard-
ing what further orientations are implied by these colliders. A third
class of methods utilises higher order statistics than just the covari-
ance; for example, Patel's pairwise conditional probability approach
(Patel et al., 2006) looks at the probability of A given B, and B given
A (under a non-Gaussian data distribution model), with asymmetry
in these probabilities being interpreted as indicating causality.
Spatial patterns of connectivity

There is also a significant amount of FMRI connectivity research
that is not working within the nodes+edges network framework.
The most obvious area is the seed-based analysis of resting-FMRI
data, where one might take a single voxel's resting timecourse and
regress all other voxels' timecourses against this, resulting in a spatial
map of correlation scores (Biswal et al., 1995). Such spatial
(voxelwise) investigations of functional connectivity4 can have some
advantages when compared with a nodes+edges analysis, for exam-
ple, if a connectivity difference between groups of subjects is one of
shape5 rather than correlation strength. A similar point can be made
with respect to the dual-regression approach (Beckmann et al., 2009);
here, a set of group spatial maps (e.g., from a low-dimensional group-
2 In the case of having more than 3 nodes, all the other N-2 nodes are regressed out
of the two under consideration.

3 Though see below for the different scenario of A→B←C, where partial correlation
does not give a sensible outcome!

4 Note the deliberate use of the term functional connectivity here; when looking at
dense (voxelwise) connectivity (as opposed to first defining nodes and then estimating
edges), one has no option but to use the simplest measures of functional connectivity
(typically just correlation), rather than applying more advanced measures of effective
connectivity, at least at present.

5 the spatial extent of the region that correlates with the seed



7 The choice of threshold itself being a practical and interpretive problem.
8 However, I think this criticism is possibly ameliorated in the cases where graph

theory is primarily being used to identify modules (functional clusters of nodes); this
is because the full correlation (functional connectivity), by definition, is describing
which nodes are functionally linked (whether directly connected or not), so this use

1259S.M. Smith / NeuroImage 62 (2012) 1257–1266
ICA) is effectively treated as a set of multiple extended seed regions,
and hence regressed into individual datasets to obtain the “seed” time-
courses, which are then regressed into the same datasets to obtain
subject-specific maps correlating with those seeds. Although this has
some important differences to standard seed-based correlation,6 the
final voxelwise cross-subject comparisons of the spatial maps is relat-
ed; because voxelwise (spatial) tests are being carried out, such analy-
sis can show changes in functional connectivity of spatial shape, and
not just strength.

Such investigations of spatial patterns of connectivity are (rela-
tively) free from the spatial over-simplifications imposed by a strict
parcellation model of the brain. For example, (van den Heuvel and
Hulshoff Pol, 2010) shows striking results from seed-based analysis
of the primary motor regions; as the seed point moves continuously
up the motor strip, the corresponding point of maximum correlation
on the contralateral hemisphere also moves up in a continuous (as
opposed to parcellated) manner. In some parts of the brain, the con-
nectivity “gradient” (how much the connectivity pattern varies from
one seed-point in the brain to a neighbouring seed-point) is much
higher than in others. Given this, it must be the case that nodes+
edges is an inaccurate model (implying some loss of “correctness”
in the derived network connectivity), and indeed that some of the
parcellation “boundaries”may be more arbitrarily placed than others.
Hence, one might choose to define parcels (nodes) in terms of their
boundaries (Cohen et al., 2008) rather than their centroids (as is effec-
tively the case with methods such as ICA); this may ameliorate the
effect of a continuum of connectivity gradients, but one will still
need to think hard about how to “average” the connectivity patterns
found when seeding from all voxels within such parcels.

Connectivity modelling from multiple subjects

Finally, there is still much connectivity-related work remaining to
be done with respect to the analysis ofmultiple subjects' data. A major
challenge here is to achieve the best within-subject modelling while
being able to robustly achieve correspondence across subjects. For ex-
ample, if one doesn't have an equivalent functional parcellation in
all subjects, the nodes and edges don't mean the same thing in all
subjects, and hence, how can one combine any network modelling
across them? Likewise, in an ICA decomposition, if one carries out
subject-specific ICA (which is good from the point of view of
modelling-out session-specific artefacts), how can one robustly guar-
antee that the components found are compatible across subjects?
There is ongoing disagreement on this (hugely important) question,
but my personal feeling is that a “core” parcellation will have to be
carried out first at the group-level, to enforce correspondence from
the beginning, and then, using that as a constraint, the within-
subject parcellation can be refined/revisited (including potentially
the modelling of “outlier” parcels/components which are missing/
additional compared with the group). There is also the question of
how to carry out group-wise network modelling (assuming that the
parcellation correspondence question can be resolved); I don't think
this is as difficult/fundamental a short-term problem as that of
multiple-subject parcellation, but this will definitely be an exciting
area. For examples of nice initial work, see (Varoquaux et al., 2010;
Ramsey et al., 2011).

Model complexity

The scope of network-related research almost falls onto a one-
dimensional continuum that starts with neural-level simulations at
one end, passes through network modelling methods that are applied
to real FMRI data, and ends with the most abstract of the graph-
6 for example, carrying out the regressions as multiple regressions means that the
resulting maps are linked to the respective seeds with greater specificity
theoretic summaries of a network matrix (Fig. 1). The various distinc-
tions between the different levels are worth noting, as they relate to
many of the respective strengths and weaknesses of different
approaches, and also inform some thoughts about valuable future
directions.

Bottom-up modelling

At the lowest modelling level, there is an increasing amount of
exciting neural-network simulation work, some of which simulates
networks of individual neurons, but most of which shows/assumes
that groups of neurons can be treated as single units (Deco et al.,
2008). While the majority of this work has to date been well-
informed by empirical data regarding neuronal dynamics (e.g., via
single-cell recordings), it has been so distant from FMRI data that it
can be hard to be sure how well the simulated large-scale network
behaviour relates to real FMRI data. Indeed, while such bottom-up
modelling has been used to generate simulated FMRI data (and in
some cases show that some characteristics of the resulting data
match what is seen in reality (Honey et al., 2007)), this work is
more likely to interact richly with MEG data before it can with FMRI
data. This is reflected in the fact that such models (e.g., “neural
mass” modelling) are used in the DCM-MEG forward model, but
deemed too distant/detailed to be worth feeding into the DCM-FMRI
forward model. One might go as far as to suggest that the limitations
of FMRI (including in particular the limit on temporal resolution
imposed by the haemodynamic blurring) may prove an insuperable
barrier to ever relating FMRI data usefully to the most detailed
bottom-up models; however, the potential benefits are too great to
not pursue such approaches, and at the very least, we can look
forward to combinations of FMRI and electrophysiological methods
together being related to the most detailed neural models.

Graph theory

At the highest modelling level, defined here as being post-
network-matrix-estimation, there is much (often relatively abstract)
work generally termed graph theory (Rubinov and Sporns, 2010).
This includes the study of network clustering and hierarchies, the
study of network hubs (nodes or clusters that are particularly highly
connected to other parts of the network), and deriving network sum-
mary statistical measures such as small-worldness (looking at how the
clustering acts over multiple scales), and measures of general
network efficiency. A lot of this work has utilised impressive mathe-
matics, but has often seemed to me to be a little too distant from
real data; for example, it has sometimes seemed that the focus on ad-
vanced graph-theoretic modelling has come at the expense of doing a
thorough job of estimating an accurate network matrix in the first
place (to feed into the graph theory). One practical danger is the
use of inappropriate node definition (Smith et al., 2011; Craddock et
al., in press), where a gross structural atlas-based parcellation may
not correspond at all well to real functional boundaries in the data,
resulting in network matrices that are probably not very meaningful
(and hence neither is the further graph theory applied to the network
matrix). A second problematic aspect of such work is that it is gener-
ally the (often thresholded7) correlation matrix that is fed into the
graph theory, and so no attempt has been made to estimate only
the direct network connections for analysis by the graph theory.8
of the correlation matrix seems quite reasonable. It is also the case that the use of graph
theory when applied to structural (e.g., diffusion MRI derived) connectivity matrices
does not suffer from this problem to nearly the same extent.



Fig. 1. Oversimplified schematic of relationships between various network modelling analyses for/from FMRI.
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This is particularly problematic where the measure (derived via
graph theory) is supposed to relate to “path length”, or where simu-
lated “lesioning” is supposed to relate to real connections!

A more general danger is that graph theory is able to abstract the
network matrix to such a high degree (e.g., summarising an entire
study down to a single number representing overall network
efficiency, or small-worldness), that one is very hard pressed to be
confident that any change in this (e.g., between patients and controls)
really reflects a change in the brain connectivity, as opposed to being
driven by any one of a myriad of potential confounds (e.g., factors as
basic as systematic group differences in head motion or heart rate).
However, I don't want to sound over-pessimistic; I do believe that
the future holds great things for this area of work, particularly as
more accurate and meaningful network matrices are fed into it. One
area that I think will be particularly exciting will be to see how
graph theory can help us decide what clusters of nodes are function-
ally meaningful, including addressing questions of how to deal with
overlap between clusters, and how best to define hierarchies of clus-
ters that are useful functional descriptions. Additionally, I would
hope that such work will feed back down, helping direct us in our
search for better methods for estimating the network matrix in the
first place.
9 For example, one major advantage of biophysically-based Bayesian modelling
(such as DCM) over non-biological point-estimate approaches is that the modelling
ends up “knowing” which of the biological parameters are (relatively) unambiguously
identifiable from the data.
10 To be fair to the more complex methods, these have often not claimed to be able to
carry out robust network “discovery”. Indeed, strongly hypothesis-driven carefully
thought-out connectivity experimentation often compares rather favourably against
some of the more “fishing-trip” resting-FMRI experiments that end up with sometimes
rather peculiar/non-refutable results!
FMRI network modelling methods

Finally there is the middle-ground, containing the majority of the
brain connectivity work that has most closely related to practical
network modelling from real FMRI data. Again, here we have a contin-
uum with respect to many distinct factors. At one extreme we have
highly-complexmodels of effective connectivitywithmany free param-
eters, each representing a biological or physical concept, such as neuro-
nal activity and (separately) the haemodynamic response to neural
activity; thismodel is “fit to” data ideally using probabilistic (e.g., Bayes-
ian)methods. The obvious example of such amethod is DCM (Friston et
al., 2003). Not only is themodel complex, but so is the inferencemethod
(for all its advantages,9 Bayesian inference is considerably more com-
plex than simple, e.g., “point estimate”, model fitting). At the other ex-
treme we have mathematically very simple methods, such as
correlation (between node timeseries). The simpler methods are in
general more “robust” (in fitting the model to the data), and faster to
compute, than the complex methods. Related to this, and the fact that
they have many fewer parameters to estimate, the simpler methods
can handle amuch larger number of networknodes than themore com-
plex methods. Additionally, the simpler methods do not require the
scope of possible network models to be pre-specified or constrained,
i.e., they are computationally practical for attempting network search
or discovery, which is more difficult for the most complex methods,
that have traditionally not been able to search over all possible network
matrices.10

However there is a serious downside to the simpler methods (at
the functional connectivity end of the spectrum); they are really just
descriptions of the data, rather than relating to underlying, interpret-
able network parameters. For example, as mentioned earlier, correla-
tion tells one nothing quantitative about causality or network
connection strengths, and as a result is more vulnerable to being af-
fected by confounds in the data. Correlation is affected by factors
such as noise level, neural input amplitude and does not just reflect
local connection strength, but is also affected by distant changes in
brain function (Friston, 2011). Moving towards the more complex
end of the modelling spectrum, with methods such as SEM (structural



1261S.M. Smith / NeuroImage 62 (2012) 1257–1266
equation modelling (McIntosh and Gonzales-Lima, 1994)), the model
parameters begin to relate to underlying network entities (such as
connection strength), but are still not biological parameters. At the
most complex end, the model parameters all relate to interpretable,
meaningful quantities such as MRI thermal noise level and neuronal
delay between nodes. Estimating quantitative, meaningful parame-
ters is clearly of great value if we want to find and interpret changes
in functional networks, for example, as a result of disease.

Hence we would like to be working at the most complex, biophy-
sically interpretable level, but this can restrict the practicality of the
analyses we can do. For example, while DCM has recently been
extended (Friston et al., 2011) to allow the modelling of resting-
FMRI and to be able to search across all possible models (rather
than requiring the pre-specification of just a few), this has only
been demonstrated to be practical (in terms of both computational
expense and mathematical robustness) on a very small number of
nodes (b10). Hopefully this can be expanded to deal with large
numbers of nodes (hundreds), but I suspect that to achieve this will
require a lot more methodological research. This is, I believe, the
major future challenge here: being able to apply the most biologically
interpretable models with large numbers of nodes in a robust and
practical way. The following section discusses some more specific
aspects of this challenge, concentrating on attempts to find causality
from FMRI data.

For now at least, it seems to me that if we want to work with a
reasonably large number of nodes (>20), a pragmatic compromise
that seems to work well in practice (at least for identifying the direct
network connections) is to use partial correlation,11 as well as the
Bayes nets methods.12 In our recent simulation work that attempted
to generate a network of realistic simulated BOLD timeseries with
up to 50 nodes, these methods performed the most accurately
(Smith et al., 2011), and scale up to handling hundreds of nodes
well, given sufficient data (primarily, number of timepoints).

I end this section with a quote from (Roebroeck et al., 2011),
recapitulating some of the aforementioned themes very nicely: “If
the biophysical model is appropriately formulated to be identifiable
(possibly including priors on relevant parameters), it can take varia-
tion in the haemodynamics between brain regions into account that
can otherwise confound time series causality analyses of fMRI signals.
Although models of haemodynamics for causal fMRI analysis have
reached a reasonable level of complexity, themodels of neuronal dynam-
ics used to date have remained simple, comprising one or two state
variables for an entire cortical region or subcortical structure. Realistic
dynamic models of neuronal activity have a long history and have
reached a high level of sophistication… It remains an open issue to
what degree complex realistic equation systems can be embedded in
analysis of fMRI – or in fact: any brain imaging modality – and result in
identifiable models of neuronal connectivity and computation.”
14 It is possible that causality estimation when the brain is “at rest” (containing po-
tentially many different functional processes mixed together, and hence estimated as
the average “relative causality” over all possible spontaneous fluctuations, quite likely
via a temporally stationary model) may be so different from what is seen during indi-
vidual focussed tasks that itmight be too much to hope that dominant causalities found
Causality

According to the clear and brief overview of causality given on
Wikipedia,13 “Philosophers … have defined causation in terms of a
cause preceding and increasing the probability of the effect”. The italics
are mine, to emphasise that these two (both quite sensible) measures
of causality can potentially be found quite independently of each
other, from a given dataset. A natural urge for many neuroscientists
is to look for causal structures in the brain; for example, a flashing
light causes the eyes to send a signal to V1, which activates as a result,
and this activation then causes V2 to activate. However, some may
11 or, even better, well-conditioned versions of this, such as via L1-norm regularisa-
tion of the inverse covariance matrix (Banerjee et al., 2006; Friedman et al., 2008).
12 the latter having the additional advantage of attempting to estimate directionality
(see next section).
13 http://en.wikipedia.org/wiki/Probabilistic_causation as of October 2011
then point out that few (if any) brain connections are uni-
directional, with feed-back/top-down connections generally sitting
in parallel to feed-forward connections. Nevertheless, many are still
interested in estimating at least the dominant direction of information
flow for a given connection (or, in the case of models such as DCM,
even attempting to estimate the forwards and backwards connection
strengths separately).

Thus, with respect to the idea of the cause increasing the probability
of the effect, we are most likely in practice aiming to find the “relative
causality”; if the dominant flow of information is from A to B, then
[the probability of B given A] is greater than the [probability of A
given B], or P(B|A)−P(A|B)>0. Interestingly, it was exactly this mea-
sure that was used in the pairwise directionality estimation approach
“Patel's τ”, which was the most successful measure of directionality of
all those tested in our recent simulation-based evaluation of network
modelling methods (Patel et al., 2006; Smith et al., 2011).14 Condi-
tional probabilities do not just have to be considered with respect to
a pair of nodes at a time; the more sophisticated Bayes nets methods
discussed in the following section can utilise the full (nodes×nodes)
dependence structure to try to do an even better job of estimating
causality. For example, recent simulations15 suggest that the full
covariance structure can be used, at least with multiple subjects'
datasets, to correctly infer directionality from FMRI data. Other recent
work16 utilised non-Gaussianities (Shimizu et al., 2006) in the data to
show even more robust estimation of (dominant) causality. A simple
explanation of the use of non-Gaussianities invokes the central-limit
theorem; if A and B each have their own inputs, and also A feeds
into B, then B will be more Gaussian than A. Although such a simplis-
tic approach would be biased by differential measurement noise,
there are more sophisticated measures which reduce such sensitivity
(Hyvärinen, 2010). However, there are still some major limitations to
such methods, some of which are covered subsequently.

Finally, as mentioned at the start of this section, we can also look
to temporal precedence to tell us about causality: if B happened after
A, then A caused B. This is only useful if the relevant temporal
information is available. This is a crucial point in the case of FMRI,
where, unfortunately, the (generally unknown amounts of) haemo-
dynamic blurring and delaying renders estimation of the neural
temporal precedence unknown. Thus temporal lag is unlikely to be
the best way to infer causality from FMRI data, and it is important
to remember that temporal lag is not the only way by which we can
infer causality (as discussed earlier and later).
Patterns of conditional independence; observational vs. interventional
studies

Graphical causal models (Bayes nets) try to do the best they can to
find the causal network structure, given the apparent probabilistic
dependencies of the different nodes' timeseries on each other; this
might be done just via the covariances (i.e., assuming the data is
Gaussian), or might try to utilise non-Gaussianities in the data to
gain further information about the dependencies. Specific patterns
of probabilistic dependencies can be used to infer aspects of the caus-
al structure; however, in addition to the caveats listed below (e.g.,
with respect to hidden external inputs), it is generally the case that
from resting-FMRI will relate meaningfully to the route by which information flows
around the “brain network”when triggered by external events; however I do hope that
they will!
15 testing the IMaGES multi-subject Bayes net method (Ramsey et al., 2011)
16 (Hyvärinen, 2010) and the use of the LOFS method in (Ramsey et al., 2011), both,
in fact, (directly and indirectly respectively) inspired by the Patel's τ results

http://en.wikipedia.org/wiki/Probabilistic_causation
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for many patterns of dependencies, there is more than one possible
causal network structure that could give rise to the data. The set of
possible networks, which it is not possible to disambiguate between
(given the data), is known as the Markov equivalence class.17 Related
to this limitation, Bayes nets are in general only able to correctly iden-
tify networks that are directed acyclic graphs— DAGs, meaning that no
networks with closed cycles of causality can be robustly estimated.
Such limitations will provide ample scope for valuable research in
coming years, given that the brain certainly contains causal cycles!

Experts in causal inference18 often draw a strong distinction be-
tween observational vs. interventional19 experimentation (for exam-
ple, see the first half of (Pearl, 2009) by Judea Pearl, an accessible
summary of concepts in causality). There is clearly a (not perfect)
parallel between this distinction, and the distinction of resting-FMRI
vs. task-FMRI. Resting-FMRI data is by definition purely observational
(no external interventions) and task-FMRI must contain some exter-
nal interventions.20 According to many causality experts, the conclu-
sions that can be drawn from purely observational studies are, in
theory, seriously limited, in terms of the confidence/robustness with
which one can draw conclusions about causalities within the system
being studied (in our case, the brain). The distinction largely comes
down to the fact that observational data requires a greater number
of assumptions to be made in order for causal inference to take
place, and there is a good chance that these assumptions could be vi-
olated. One example confound is the presence of unseen external fac-
tors (e.g., hidden common causes) that generate apparent causalities
between two viewed nodes; this is a greater problem for resting-
FMRI than for task-FMRI. An example (which we have recently seen
in real resting data) is where we have found spontaneous activity in
the frontal eye fields “causing” activity in early visual areas, but of
course we could not tell if this was due to FEF activity causing the
eyes to move, which caused an external (hidden) change in what is
then seen by the early visual areas, or whether we were seeing part
of a “top-down” modulatory effect. A careful vision (task-FMRI) ex-
periment would explicitly control for various confounding factors
and aim to lead to more meaningful specific interpretations of the
data.21 A related, more mundane, issue is that artefactual correlations
in the data are more likely to interfere with resting-state connectivity
estimations than they are to confound a task-based connectivity ex-
periment (because, in resting FMRI, there is no known timing infor-
mation that can help to reject the artefactual effects).

A scenario that helps illustrate the difference between observation-
al and interventional data, and also between the raw covariance
pattern and the use that Bayes nets can make of it, is that of “Berkson's
paradox” (or “explaining away”, a special case of “selection bias”). Here
we have the causal structure A→B←C, where A and C are not directly
connected. If we actively hold B constant, via experimental
17 We can aid methods such as Bayes nets, SEM and DCM greatly if we can utilise pri-
or knowledge about the brain to constrain the set of possible networks that are
allowed.
18 This is an area of research often closely linked to methods such as graphical models
and Bayes nets.
19 In order to make a strong statement about causality, it is not enough to consider
the probability of B occurring when A happens to occur, vs. when A does not; what
is needed is to observe B when A is forced (through intervention) to occur, vs. when
A is forced not to occur (nice example: a barometer and a storm). In the context of net-
works of causality, when the intervention (or stimulus) node is included in the model,
the intervention automatically orients the direct effects of the stimulus node (since any
correlation of stimulus and brain node timeseries must be due to the effects of the
stimulus on the brain). This may help to orient “downstream” edges between nodes.
20 Though presumably many “interventional” task-FMRI studies do not directly con-
trol the elements of the network necessary for the inferred causalities to be as unam-
bigous as causality researchers might want!
21 A simple example of an interventional experiment that is a natural extension of
functional (resting, observational) connectivity is one using PPIs (Psychophysiological
interactions) (Friston et al., 1997), where the correlation between two timeseries is
contrasted between two distinct cognitive states that have been interventionally
dictated.
intervention, the lack of a causal link between A and C will be correctly
observed in the data. However, things are different if we do not actively
intervene, but try to account for (“condition on”) B in simple analysis;
in a partial correlation analysis (i.e., testing for conditional indepen-
dence), by regressing B out of A and C, we induce a negative correlation
between A and C!22 This is clearly problematic, but we canmaybe hope
to recognise this scenario by noting that the full correlation (testing for
“marginal independence”) shows that A and C are uncorrelated. Finally,
however, if we can correctly assume that there are no hidden causes in
play,23 a Bayes net analysis of the full set of (marginal and conditional)
probabilistic dependencies will be able to fully identify the correct
causalities.24

Even if one really cannot be sure about the “causal” conclusions
being derived from resting-FMRI experimentation, it still has a role
in “discovery science”. For example, in (Steyvers et al., 2003), we
are told that “In laying out his approach to scientific discovery, Mill
[in] 1874 noted that while only experiments can prove causation,
pure observation still plays an important role as the natural guide
for experimentation. Entering a new domain, scientists often do not
know what questions are worth asking, and which experiments
worth doing, until they observe a surprising phenomenon along
with some other correlated events that might be potential causes.
Like scientists, people might use observations primarily to form hy-
potheses and interventions primarily to test those hypotheses.” For
example, resting-FMRI can suggest hypotheses that can then be fur-
ther interrogated in more rigorous experimentation. Furthermore,
despite the concerns described earlier, it is generally the case that in
practice people are more ambitious in the number of nodes that
they extract and use in network modelling from resting-FMRI data
than from task-FMRI experiments, adding (hopefully useful) further
richness to the “discoveries” that can be made from resting-FMRI net-
work analysis.
Dynamic biological Bayesian models

“Standard” Bayes nets are static (aka “instantaneous” or “zero-lag”)
models, meaning that the data is reduced to summary-statistics (e.g.,
covariances) between timeseries, collapsing over all time, as opposed
to dynamic methods which fit a temporal model directly to the entire
(set of nodes') timeseries. Dynamic models (e.g., dynamic Bayes nets
or DCM) can in theory utilise both temporal lag information and the
conditional dependencies, in order to infer causality. This might be
expected to give such methods an advantage (making use of more,
conference if they can pay their own costs, or if their work is good enough to be given
an oral presentation (or both). Because the students who fail on both counts do not at-
tend, the average correlation (conditional on going to the conference) between rich and
clever students appears to be negative!
23 This is a very big “if”! However, there are variants of Bayes net approaches that do
explicitly try to deal with even this issue (Zhang, 2008).
24 A further, related, example is given in Pearl (2009), which we include for the inter-
est of the brave reader who is comfortable with this description of Berkson's paradox,
and wants more: “…the requirement of holding the mediating variables fixed [where
mediating or intermediate refers to network nodes that sit between other nodes of in-
terest in the network's chain of causality] must be interpreted as (hypothetically) set-
ting the intermediate variables to constants by physical intervention, not by analytical
means such as selection, conditioning, or adjustment. [For example, by regressing an
intermediate node's timeseries out of the others under consideration.] For example,
it will not be sufficient to measure the association between gender (X) and hiring
(Y) for a given level of qualification Z, because, by conditioning on the mediator Z,
we may create spurious associations between X and Y even when there is no direct ef-
fect of X on Y.... This can easily be illustrated in the model X→Z←U→Y, where X has
no direct effect on Y. Physically holding Z constant would sustain the independence be-
tween X and Y, as can be seen by deleting all arrows entering Z. But if we were to con-
dition on Z [e.g., carry out a partial correlation analysis on resting-FMRI data] a
spurious association would be created through U (unobserved) that might be con-
strued as a direct effect of X on Y.”
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richer, aspects of the data). However, this is not necessarily the case.
For example, temporal lag between two FMRI timeseries is a summa-
tion of neural lag and differential haemodynamic delays, and a fitted
biological generative model is likely to report simply that these two
effects cannot be disambiguated from each other given the data25;
hence little or no use will bemade of the temporal lag in terms of infer-
ring (neural) causality. In this case, all we are left with is the set of con-
ditional probabilities (e.g., just the covariance structure of the data, in
the case of Gaussian data/modelling), and any inference that can be
drawn faces all of the limitations and dangers discussed earlier. It is
possibly considerations such as this that have led some, rather harshly,
to describe DCM as being little more than Bayesian SEM with HRF
deconvolution!

Of course, this is not the whole story. The fact that the Bayesian in-
ference in DCM will be able to work out for itself that temporal lag is
probably not informative about neural causality is indeed valuable! If
we are able to generate data where the lag could be usable (e.g., if we
can pre-characterise the haemodynamics accurately in all regions
being studied, and use that knowledge to feed into the DCM haemo-
dynamic priors, and if we can generate high-quality short-TR FMRI
data, and if we include neural lag in the DCM model), then DCM
will immediately “know” that it can start making use of this aspect
of the data to infer causality. This (model-fitting utilising knowledge
about its own strengths and weaknesses) is something which
methods based purely on data-descriptive auto-regressive modelling
(e.g., Granger causality) simply cannot do. More generally, the fact
that the parameters being fit in DCM are biophysical means that we
learn about the quantities that we really care about, even if all that
we are told is that a given parameter cannot be estimated with
high precision from the data. Finally, to the extent that the biophysical
model of DCM predicts nonlinearities/non-Gaussianities in the
data, these aspects of the data can be exploited, as long as the bio-
physical model is sufficiently accurate; this may help get around
some of the (causality inference) limitations described at the start
of this section.

Future

So, what of the future of causality estimation? The initial results
reported in (Ramsey et al., 2011) are indeed encouraging, suggesting
that both Bayes nets and non-Gaussianity-based methods can be
used to estimate causality. Although these approaches do not escape
from all of the limitations discussed earlier, they do show that direc-
tionality is in principle estimable from FMRI data. Although it is gen-
erally assumed that in theory methods such as Bayes nets and
approaches based on non-Gaussianities can only estimate acyclic
networks, these results suggest that in practice this is not always
the case.

However, concerns regarding observational studies are worth tak-
ing seriously, I believe. To be more confident of the directionality (or,
even better, the parameters of the forwards and backwards connec-
tions between any two regions), we will likely require task studies
(or even more “active” interventions such as TMS or pharmacological
manipulation). Hence I would hope that in the near future the
complementarities between resting-FMRI and task-FMRI (and be-
tween pragmatic, data-descriptive analyses and sophisticated, highly
parameterised, biophysical modelling) will be more explicitly appre-
ciated. Hopefully, this will cause greater use of the combination of rest
and task, and of different analysis methods, taking the respective
strengths from each; hopefully the rigour of the “scientific method”
of hypothesis-based experimentation can merge with the larger-
scale discovery methods.
25 The two parameters, which are very similar to each other in terms of their effect on
the (apparent lag in the) data, will each have a very wide (marginal) posterior distri-
bution; the uncertainty on each is very high, unless one parameter is already known.
Nonlinearities and temporal nonstationarities

The majority of FMRI connectivity research to date has worked with
the (explicit or implicit) assumptions of stationarity and linearity.
Stationarity in general means that some statistic or model parameter
of interest is non-changing, and in this context is generally used to
mean that some measure of connectivity (e.g., correlation between
two regions, or connection strength parameter in a DCM model) is
not changing over time. Linearity, in this context, might be referring
to the output of a node being a linear combination of its inputs, or to
the haemodynamic response being a linear function of the neural activ-
ity (e.g., if the activity is doubled, then so is the haemodynamic re-
sponse). As data quality and analysis methods improve, we become
more able to see and model nonstationarities and nonlinearities, and
I expect such improvements in modelling sophistication to be a
major growth area in the next few years.

It can be somewhat confusing that these terms are often used with
some vagueness, and this is not helped by the fact that a given dataset
may appear linear and stationary from the point of view of one
modelling approach, while appearing to be nonlinear and nonstation-
ary from another. For example, DCM may happily be able to model a
3-node task-FMRI dataset where the activity at node C modulates the
strength of the (otherwise linear and unchanging) connection be-
tween nodes A and B (Stephan et al., 2008). Thus we have a system
which DCM considers well-modelled, and linear/stationary in all its
components, but which a simple correlation analysis between nodes
A and B will see as both nonlinear (B is not apparently a linear func-
tion of A) and nonstationary (the connection strength appears to
vary over time). One can justifiably see this as a weakness of the
less quantitative/complete analysis methods such as correlation;
however, even with respect to the most sophisticated of methods,
one can easily imagine scenarios where their assumptions (of linear-
ity/stationarity) are unjustified — for example, if the strength of the
modulatory influence is varying over time, controlled by some unseen
factor.

Note that although some modelling methods (e.g., DCM and dy-
namic Bayes nets) call themselves “dynamic”, that generally refers to
modelling timeseries dynamics, and does not imply that their underly-
ing parameters (in particular strengths of connections) are allowed to
vary freely over time.26 However, there is recent related work which
attempts to expand the range of modellable scenarios that under pre-
vious models would appear to be nonstationary. For example, see
Jason Smith's work on a DCM-like approach that models the data
with a temporally-varying alternation between multiple different net-
work models (Smith et al., 2010).

Unfortunately, it is still the case that such sophisticated, highly
parameterised models are not yet applicable to carrying out network
discovery on large numbers of nodes, bringing us back to the practical
tradeoff between the complexity/interpretability of the modelling,
and the number of nodes that can be handled. This is one reason
why the simplest methods (such as correlation) are still widely
used, particularly for resting-FMRI datasets. As a result, some re-
searchers who are interested in nonstationarities are starting to look
into adaptation of these simplest methods, e.g., using sliding-
window correlation rather than just estimating one correlation
value across the whole timeseries.

In just the last couple of years the resting-FMRI community has
started looking into nonstationarities, so far, in order to better under-
stand the dynamics of resting-state “anticorrelations” (such as seen be-
tween the “default mode network” and the “task positive network”),
but there is no reason to restrict the study of nonstationarities to
26 A nice introduction to (static and dynamic) Bayes net models http://www.cs.ubc.
ca/ ~murphyk/Bayes/bnintro.html puts this well: “Note that ‘temporal Bayesian net-
work’ would be a better name than ‘dynamic Bayesian network’, since it is assumed
that the model structure does not change, but the term DBN has become entrenched.”

http://www.cs.ubc.ca/
http://www.cs.ubc.ca/
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negative correlations. One of the first groups to inspire this was the ex-
perimental work of Daniela Popa and Denis Paré, where LFP and unit
recordings were acquired in functionally anticorrelated regions (Popa
et al., 2009). They showed that there were distinct periods when two
regions were positively correlated, and others when they were anticor-
related — a simple example of nonstationarity. One important future
issue for such work will be to try to distinguish between such changes
in correlation being due to different nodes being part of multiple overlap-
ping functional networks vs. the internal connections within any given
network being non-constant, and it is not apparent which of these
factors dominates in practice in (apparent nonstationarities seen in)
typical resting-FMRI data. Indeed, there are many other sources of
apparent variability in correlation, e.g., as seen by sliding window
correlation. Most of the criticisms (discussed earlier) of the
non-quantitative nature of correlation (as a connectivity measure) by
Friston are equally valid criticisms of sliding-window correlation; for
example, changing noise level or changing level of neural activity will
cause an apparent nonstationarity in correlation. In addition, it is easy
to end up with a suboptimal implementation, such as applying a
sliding-window length that does not encompass (at least) several cy-
cles of the resting fluctuations, a particular problem, given that non-
highpass-filtered data will have the dominant fluctuation power at
quite low frequencies (≈0.015 Hz).27 If only a fraction of a cycle is
seen within the sliding window, then the apparent correlation is
expected to appear to fluctuate wildly over time, even if the network
structure is stationary.

A richer, related approach is to look at coherence (and relative
phase) between two timeseries over a range of frequencies and associ-
atedwindow lengths (matched to the frequencies to avoid the problem
just discussed28), typically achieved viawavelet transforms. Each node's
timeseries is transformed into a set of new timeseries, each one estimat-
ing a bandpassed version of the data with a different centre frequency.
Then two nodes' wavelet decompositions can be compared (as a 2D
function of time and frequency), with a range of relative measures es-
timable, such as relative phase (are the nodes temporarily correlated
or anticorrelated?) and coherence (do they both have significant
power at this frequency at this point in time, with locally constant rel-
ative phase?). Early work on this was carried out by Catie Chang and
Gary Glover, showing from FMRI data that the default-mode anticorre-
lations were varying over time (Chang and Glover, 2010).

As mentioned earlier, one potential source of apparent nonstatio-
narity in correlation is where different nodes are part of multiple over-
lapping functional networks. This is a subject we are currently
investigating, by seeking to identify functionally independent networks,
as opposed to different networks being spatially independent (in the
latter case the working assumption is that the networks should be spa-
tially largely non-overlapping). However, the temporal richness in the
data required for such analyses is very challenging given typical FMRI
acquisitions, and hence we are working with short-TR accelerated EPI
data (Feinberg et al., 2010) to identify temporally independent
modes of brain activity. We are hopeful that in the near future we
will be able to report results showing some quite distinct functional ar-
chitecture from that currently seen (e.g., with low-dimensional spatial
ICA or seed-based correlations).

Finally, outside the general network model of nodes and edges, and
not estimable by simple “outer product” models of resting-state
networks (such as ICA), there is some initial evidence of nonstationari-
ties appearing in the form of spatiotemporal patterns of spontaneous
activity that propagate across the brain and may explain at least
some of what we see as nonstationarity in resting-state networks.
27 There is some recent evidence (Niazy et al., 2011) that good quality resting-FMRI
data can allow resting-state networks to be estimated up to at least 0.2 Hz, hence ag-
gressive highpass filtering could hopefully ameliorate this problem.
28 and also, ideally using methods such as Monte Carlo simulations to identify which
correlations/coherences are stronger than chance
The group of Shella Keilholz has a good deal of data from animals and
humans that suggest that such patterns are repeatedly found, i.e., are
not just random fluctuations across space and time (Majeed et al.,
2010). If this work is indeed showing spontaneous neural spatiotempo-
ral processes, and if these are a significant component of resting-state
data, we will need to think hard about even the most common, basic
current methods of analysis!

Other issues… and conclusions

This paper was supposed to concentrate on FMRI connectivity, and
so I have barely mentioned other modalities, but it is clear that com-
bining different experimental techniques will be crucial in the future
of brain connectivity research — quite possibly a lot more important
than the primarily-FMRI areas that I have discussed. The many mo-
dalities that are able to probe neural processes more directly than
can FMRI include non-invasive modalities such as MEG and EEG, and
many different invasive electrophysiological techniques such as the
study of local field potentials, and single-unit recordings. The im-
proved temporal resolution and neural interpretability of many of
these other modalities will have a huge impact on our ability to
look at causalities, nonstationarities and modulatory effects. It
seems that experiments using simultaneous-FMRI+EEG and non-
simultaneous-FMRI+MEG have been somewhat slow to take off,
partly because of the difficulty of determining which (of the many)
sources of signal in the EEG/MEG data really relate to what we
know of as resting-state networks in the FMRI data. However such
work is moving forwards, and in particular, I think there will be
quite an explosion of resting-MEG experimentation in the next few
years; for example, (de Pasquale et al., 2010) identified the default
mode and task positive networks via resting-MEG data, and, more re-
cently, (Brookes et al., 2011) found 8 different resting-state networks
in resting-MEG data that were spatially an excellent match to net-
works previously shown in resting-FMRI. Other related areas of re-
search29 are studies of (mostly) low-frequency oscillations in rest
vs. sleep vs. anaesthesia, in humans and animals, using a range of
electrophysiological modalities, such as “DC-EEG” (meaning very
low frequency, b1Hz EEG). There are suggestions that there could
be overlap between such work (including travelling electrical wave
studies/slow cortical potentials (Riedner et al., 2011; He et al.,
2008)) and what we know of as resting-state FMRI networks, but
I'm not aware of any work yet that has unambiguously linked such
things together.

There is also a wide range of interventional techniques, including
those that are “external” (TMS, TDCS, etc.) and others that are “inter-
nal” (optogenetics, direct electrical stimulation, etc.); these further
expand the range of experiments and questions that we can ask,
and may help ameliorate the limitations of purely “observational”
data. While it is clear that FMRI will not be the only methodology
used to study brain connectivity in the future, it remains the case
that there is no other modality that is close to what FMRI can give
us with respect to its specific combination of non-invasiveness, whole-
brain coverage and spatial resolution.

Of course the future also holds much promise in terms of the other
MRI modalities. An obvious complement to FMRI connectivity is
diffusion-based connectivity, which can give robust and detailed esti-
mation of structural connectivity. One might over-simplify the com-
plementarities between diffusion-based structural connectivity and
FMRI-based functional/effective connectivity by saying that the for-
mer suffers primarily from false negatives while the latter suffers
from false positives (in estimating the “connectome”); with respect
to the problems of distinguishing direct from indirect connections
29 of which I am embarrassingly ignorant, and hence can only refer to vaguely, but di-
rect the interested reader to a recent book put together following an excellent low-
frequency oscillations workshop in Amsterdam (Van Someren, 2011).



1265S.M. Smith / NeuroImage 62 (2012) 1257–1266
from FMRI data, we can hope that the structural connections can
serve as valuable priors (or aim for a more integrated analysis of true
connectivity). Indeed, resting-FMRI and diffusion MRI are the two pri-
mary modalities30 mandated to be used in the NIH Human Connec-
tome Project; this began in 2010, and should produce the most
detailed, large-scale in vivo whole-brain connectivity mapping
achieved to date. The HCP will generate leading-edge quality data
from long imaging sessions with over a thousand subjects. It will be in-
teresting to see how other ventures,31 that seek to bring together even
larger numbers of subjects (and covering a wider range of subject
groups such as different pathologies, but subject to the caveat of having
greater heterogeneity of scanning parameters and lower overall data
quality), will complement studies with smaller numbers of subjects
and higher-quality data. Hopefully the larger, heterogeneous databases
of connectivity datasets, while not supporting the most sophisticated
analysis techniques, will complement studies such as HCP by being
able to find gross imaging phenotypes and carrying out very-large-N
subject-pathology correlations. In addition to FMRI and diffusion MRI,
there is increasing evidence that even structural MRI (e.g., acquiring a
single T1-weighted image per subject) can tell us about functional net-
works, through covariance analysis (Seeley et al., 2009), the idea being
that functionally-connected regions covary with each other across sub-
jects in terms of some structural characteristics (such as cortical
thickness).

FMRI itself is by no means at the limit of its technical abilities.
Raising the field strength continues to be of increasing value — possi-
bly more so than expected, for resting-FMRI, given that the occasional
mantra of “you don't get what you hope for when you increase field
strength” does not take into account that a lot of the increased “phys-
iological noise” is the very resting-FMRI spontaneous fluctuations
that we are now using as signal! Indeed, resting and task-FMRI at
7 T is already seeing spectacular gains in spatial resolution and/or ef-
fective SNR. Additionally, several groups are producing exciting new
work on accelerated FMRI, with the ability to achieve sub-second
whole-brain imaging (Feinberg et al., 2010). Such short-TR FMRI
can, dependent on the analysis being carried out, give much greater
gains in effective SNR than might initially be predicted— for example,
when using methods32 which are dependent on high temporal
degrees-of-freedom, or applying artefact modelling approaches that
benefit from dense temporal sampling. Additionally, we should be
able to do much better with analyses looking at non-Gaussianities,
non-linearities and nonstationarities, when moving to faster-
sampled FMRI data.

Finally, I have not yet mentioned clinical applications of FMRI con-
nectivity, but this is clearly going to be a huge growth area. There are
already many papers linking changes in connectivity to different dis-
eases (Filippini et al., 2009), and resting-FMRI (and FMRI connectivity
in general) should hopefully become a powerful clinical marker, albe-
it with the interpretive caveats listed earlier regarding the quantita-
tive and biological issues associated with the simpler functional
connectivity measures (which can become even more problematic
when disease is associated with changes to neurovascular coupling,
either as a direct result of the disease, or due to pharmacological in-
terventions). Ultimately, in order to maximise the interpretability of
changes seen (across different clinical or cognitive conditions), we
will need to move from functional towards effective connectivity
modelling.33 One important advance that will help bring even greater
benefit to the use of connectivity measures in clinical applications
will be the use of multivariate classifiers, rather than just simple
30 with other modalities to include task-FMRI and MEG.
31 For example the “1000 functional connectomes” project (aka “KFC”) (Biswal et al.,
2010), created by Mike Milham.
32 such as parcellation through high-dimensional ICA, or when using partial correla-
tion or SEM applied to large numbers of nodes
33 Note that the study of changes in cognitive state has been an active and successful
application of methods such as SEM for many years.
univariate tests (Craddock et al., 2009). In addition, hopefully with
the growth of the more sophisticated, quantitative and biologically
interpretable modelling methods (Brodersen et al., 2011), we will
see FMRI connectivity become not just a powerful clinical marker,
but a tool for investigating disease mechanism. For clinical and non-
clinical investigation of brain structure, function, development and
pathologies, FMRI connectivity will remain a powerful, sensitive non-
invasive tool, and over the coming years I see huge potential for fur-
ther growth, in terms of both the upcoming technical and modelling
challenges, and in its applications.
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