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The phenomenological Bloch equations in nuclear magnetic resonance are generalized by the addition of
terms due to the transfer of magnetization by diffusion. The revised equations describe phenomena under
conditions of inhomogeneity in magnetic fieM, relaxation rates, or initial magnetization. As an example the
equations are solved in the case of the free precession of magnetic moment in the presence of an inhomo-

geneous magnetic field following the application of a 90' pulse with subsequent applications of a succession
of 180' pulses. The spin-echo amplitudes agree with the results of Carr and Purcell from a random walk
theory.

HE phenomenological equations of Bloch' have
played an important role in the development of

nuclear magnetic resonance. They have been found to
give an excellent description of resonance and associated
transient phenomena in the case of single lines in Quids.
The purpose of this note is to propose a generalization
of the Bloch equations which incorporates eGects due
to the diGusion of magnetization. Such eGects will arise
under conditions of inhomogeneity in magnetic Beld,
relaxation rates, or initial magnetization. With the aid
of the generalized Bloch equations such problems can
be solved with relative ease.

Diffusion of magnetization will generally take place
by self-diffusion of moment-bearing nuclei. Another
possible mode is spin-direction exchange between
neighboring nuclei induced by direct dipolar interaction
or by the exchange-coupling via electrons. Diffusion by
spin-exchange has been considered by Bloembergen' in
connection with the eGect of impurities on the relaxation
time in crystalline solids. In fact he used an equation
which can be considered as a specialization of Eq. (3)
below. The effective diGusion coefficient for spin-
exchange is, as Bloembergen showed, of the order of
a'/50Ts, where u is the separation of neighbors and T,
the transverse relaxation time. For Quids, except in the
case of very high viscosity, the coeKcient of self-
diGusion is many orders of magnitude larger than the
spin exchange coefficient. Also spin-exchange diGusion

may be expected to aGect only the longitudinal com-
ponent (component in direction of instantaneous field).
We shall understand by D the coeKcient of self-diffusion
and will indicate below what corrections need be made
to take spin-exchange into account.

The usual Bloch equations may be thought of as
describing the continuity of magnetic moment. Indeed
Bloch's original derivation was based on this idea. Thus
for example the rate of increase of x component of
magnetic moment is equated to the sum of two parts:
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(a) the contribution of the torque exerted by the mag-
netic field on the vector moment and (b) the contri-
bution of the relaxation processes. Under inhornoge-

neous conditions we extend this idea to the magnetic
moment of an elementary volume Av.

Because of the diffusion of magnetization through
the surface of Av, we must include an additional con-
tribution to the rate of increase of the magnetic moment
of Av. The diffusion current density of magnetization
may be found as follows:

We choose axes arbitrarily oriented with respect to
the field direction. Let us quantize the spins along a
coordinate axis, say the x axis, and let e+ and e be,
respectively, the number of positively and negatively
oriented spins in this direction. (We are assuming a
spin of —,'; the final result is independent of the spin. )
The diGusion current densities of the two types will

then be
jg rrgV ~ Dv——isp—

Here V+ (V ) is the drift velocity of the positively
(negatively) oriented spins. ' We may assume the drift
velocity to be proportional to the force on the nucleus

produced by the action of the field gradient on its
magnetic moment. The force on a nucleus with a
positively oriented spin of moment p, will be

f+=V(y H)=p, vH. ,

since the spin is oriented along the x axis. Similarly,

f = pvH, . —

If the Quid is confined, there will be a small additional
force caused by the fact that the field gradient produces
a body force acting on the magnetized medium. A

pressure gradient is set up in response and is responsible
for an average force of the surroundings on a nucleus.
This force is, however, of order IJH/kT compared with
the direct force (Vp H) and will be neglected.

Thus we shall have EV+=&liVH„where E is the
conductivity. By Einstein's relation, E=kT/D. The

' I am indebted to Professor Lars Onsager for pointing out to
me the desirability of including the drift current. Actually, as will
be seen below, it is doubtful that the drift terms will produce
e8'ects of discernible magnitude.
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diffusion currents become

j~=a (D/kT)n~VH. —DVn~.

The diffusion current of the x component of magneti-
zation will be given by

ti(j+—j ) = Dv—p(n+ n)—nD—V (tJsH, /kT)
Dv(M—, Mp ),—

where M,p=(ntj, '/kT)H, is the x component of the
equilibrium magnetization. The rate of increase of
x component of magnetic moment of the volume element
hv due to this diGusion current will thus be

(BM /r)t)ndv= — tin (j+—j )dS

Dn V(M, M,p)dS—

=v Dv(M. M,p)hv. —

This term must be added to the x component Bloch
equation. Proceeding in a similar way with the other
components and dividing by Av, one obtains

)Mr/ ltr=p(MXH) —M /Tp+V DV(M —M p), (1)

itM„/itt=y(MXH)„M„/Ts+V —DV(M„M„p), (2—)

BM,/Bt =y (MXH).+ (M p M,)/Ti-
+v Dv(M, M„). (3)—

In the case of spin-exchange diffusion (coefficient D,),
the D in Eq. (3) needs to be augmented by D,.
These equations diGer from the Bloch equations not
only by addition of the diGusion terms, but also in that
the time derivatives are now partial since they refer to
a particular point in space.

It will be recalled that the Bloch equations are in-

tended to refer to the case of a strong field in the z
direction with possible small variable components in
the equatorial plane. It would seem at first that for this
case we should put M,p=M„p=0 and 3f,p=Mp, the
equilibrium magnetization. However, it should be noted
that it is the spatial derivatives of M p and Myp that
enter into the first two equations. If the magnetic field
has a gradient, the gradients of M, p and M„p will be of
the same order as the gradient of 3f,p and thus the terms
in iV p and M„p must be included along with the term
in M;p. These "drift" terms (terms in M,p, M„p, M„)
will, however, in general be quite small and their effects
almost always negligible. In order for the resonance to
be observed even with refocussing techniques, it is
necessary that the field gradient be kept very small and
thus the gradients in (M,p, M„p, M, p) must also be very
small. In spite of this condition it is possible to have
very large gradients in the actual magnetization M.
There may, for example, be sharp gradients in T~ and
T2 so that relaxation proceeds at quite different rates

at localities a short distance apart. ' ' A second possi-
bility for large gradients in the magnetization arises
when the magnetization is disoriented from the field
direction. The magnetization then precesses about the
field. If the field has even a very small gradient, the
cumulative eGect of slight diGerences in precession rate
at neighboring localities will eventually produce large
gradients in the magnetization. In the second part of
this paper the generalized Bloch equations are applied
to this eftect.

Equations (1)—(3) refer, as do the usual Bloch
equations, to the case of a large static field II, in the
s direction plus possible small components which may
be variable in the equatorial plane. The usual Bloch
equations can be modified so that transverse relaxation
takes place perpendicular, and longitudinal relaxation
parallel to the instantaneous magnetic field. The
equations thus modified apply to a general magnetic
field. Written in vector notation without reference to a
coordinate system, the modified equations generalized

by the diffusion and drift terms wouM take the form

rIM/&t =y (M XH) —M/Ts+xpH/Ti+ (M HH/H')

X (1/Ts —1/Ti)+V DV(M —Mp). (4)

In case spin-exchange diffusion is not negligible, an
additional term V D,V((M —Mp) HH/H') needs to
be added to the right side of (4).

This refinement (4) of (1)—(3) is inconsequential if,
as is usually the case, the line width is small compared
with the resonant frequency.

Since the drift terms are very small for the reasons
given above, we shall omit them in the example treated
in Sec. II.

As an example, we shall now apply Eqs. (1) and (2)
to find the spin-echo amplitudes in the presence of an
inhomogeneous field. This problem has been treated by
different methods by Hahn, ' by Das and Saha, ' and

by Carr and Purcell. ' We shall assume with the latter
authors that a 90' disorienting pulse is followed by a
succession of 180' pulses. The procedure adopted here
is more general and less cumbersome than prior methods.

We assume that the magnetic Geld consists of (a) a
uniform magnetic field Hp in the z direction and (b) a
superposed field vanishing at the origin with gradient
G in the s direction and with axial symmetry about the
s axis. The most general resultant field of this character,
linear in the coordinates, is (neglecting contributions
arising from M)

H, = —-', Gx, H„=—-', Gy, H, =Hp+Gz.

4 H. C. Torrey, Bull. Am. Phys. Soc, Ser. II, 1, 216 (1956).
5 R. J. S. Brown, Bull. Am. Phys. Soc. Ser. II, 1, 216 (1956).' J. Korringa, Bull. Am. Phys. Soc. Ser. II, 1, 216 (1956).
7 Codrington, Olds, and Torrey, Phys. Rev. 95, 607 (1954).
E. L. Hahn, Phys. Rev. 80, 580 (1950).' T. P. Das and A. K. Saha, Phys. Rev. 93, 749 (1954).

"H. Y. Carr and E. M. Pnreell, Phys. Rev. 94, 630 (1954).
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we obtain from (7) and (8)

By/Bt = iyGs y —,'iyG (—x+-iy) M,e'""+"r'

+V.DV y. (9)

The second term on the right oscillates rapidly and
contributes to y an amount of order MOG(x+iy)/Ho
which we assume to be negligible. Dropping this term,
we have then

By/Bt= iyGsy+—V DVy

q represents the amplitude of the precessing magneti-
zation unattenuated by relaxation. In the absence of
diffusion and inhomogeneity, y is a constant. With
inhomogeneity and without diffusion, (10) gives a small
precession of cp in the rotating frame; its phase being
—yGst. The effect of diRusion is to attenuate q by
virtue of the replacement of nuclei at any position by
others which coming from different locations have
different phase memories. The effect thus arises solely
from the phase. Thus we may assume that following a
90' pulse applied to the equilibrium magnetization,

y=M A(t)e—'& "
where A (t) is a function of t only. This assumption will

hold so long as the diffusion time of a nucleus to the
boundaries of the material is long compared with the
damping time.

Substituting (11) in (10), we obtain

dA/dt= ADe'~~*'Vse '~g*'

= —A ay'G't'.

Integration gives, since A (0)= 1,

A =exp (—-',Dy'G't3) (12)

which is the well-known result' ' for the attenuation by
diffusion following a 90' pulse.

We now investigate the effect of applying a series of
180' pulses at times tj, 3t~, St~, etc. , after the 90' pulse.
Just before the first 180' pulse, the phase of y by (11)
is —8= —post~. The 6rst 180' pulse rotates the mag-
netization about an axis in the equatorial pla~e per-

We now substitute (5) in (1) and (2), multiply the
resulting equation (2) by i= (—1)& and add to (1).
Defining

(6)
we obtain

Bm/Bt= i&uoni—spGs—nt nl/T—2+V DVni
', ip—G-(x+iy)M, . (7)

Here oro=pHp and m, the complex transverse mag-
netization, is a vector in the complex x-y plane which
precesses about the s axis with angular speed —coo. In
the absence of diffusion, nz is exponentially damped
with relaxation time T2. Putting

Substituting either (13) or (14) in (10), we obtain

dA/dt = AUG—'(t 2nt, )'.— (15)

Integrating from (2n —1)ti to t, we get

A (t) =A [(2n 1)ti—$ exp{—st'G'[(t —2nti)'+ti3j}.
(16)

Thus, at the end of the interval,

A (t) =A[(2n 1)ti—]exp{ ~3''G't '—}
It follows that each interval attenuates the amplitude

by exp( —-', Dp'G'tie). Since the interval between the
90' pulse and the first 180' pulse attenuates by
exp( —isDy'G2tis), we get

A [(2n—1)ti]=exp[ ——', (2n —1)Dy'G'tiaf. (17)

Substituting (17) in (16) and putting t=2nti, we
6nd for the amplitude of the mth echo

A (2nti) = exp( —-', nDy'G'ti3) .

or, putting ti=t/2n,

A (t) =exp( —Dy'G'P/12n') (18)

which is precisely the result of Carr and Purcell"
obtained by them from a random walk theory.

Equation (18) may be written in the form

A (t) = exp{—-,'Dy'G'ti2t} (19)

Substituting (19) and (11) in (8), it is seen that the
echo amplitudes decay exponentially with relaxation
time T2* given by

1/T2* 1/T + 'Dy'G't—— —(20)

The 6nal result, (18) or (19), does not depend on the
assumption made above that the rotating rf field com-
ponent maintains a certain 6xed direction from pulse
to pulse in the rotating frame of reference. Indeed it
may easily be seen that Hi may have any orientation
in the equatorial plane and that this direction may vary
from pulse to pulse without affecting the key equation
(»).

pendicular to the axis of zero phase, thus shifting the
phase of y to s+8. During the subsequent interval 2ti,
the phase shifts to x—b and the second 180' pulse
shifts the phase to +B. The next interval of 2ti brings
the phase again back to —6 and the process repeats.
Just after the nth 180' pulse, the phase is s+B if n is
odd and +B if n is even. Whenever the phase is 0 or x,
i.e., at t= 2nt~, there is an echo. Thus, within the period
of duration 2t~ following the eth pulse, we have, if e is
even,

y =MOA (t) exp{iyGst —iyGs[t —(2n —1)t,]}
=MoA (t) exp{ iy—Gs(t 2n—ti) }, (13)

and if e is odd,

y=MOA (t) exp{is.—iyGs(t —2nti) }.


