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The consequences of the causality principle on the relations between absorption 
and dispersion mode signals obtained in a repetitive pulse-Fourier experiment are 
investigated with particular emphasis on the distribution of information between 
the two signals. Interpolation processes to obtain higher frequency resolution are 
anaIyzed and the influence on the inherent sensitivity is described. 

INTRODUCTION 
It is well known that the real and imaginary parts of the transfer function Y(f) of a 

linear, time-invariant physical system are related by a Hilbert transformation (f-3): 

Y(f) = WI + af), D3 

U(f) = (-l/v?* w-> = -(lip) J Vf’) u--f’>-l a-‘: 
--m 

w”) = (l/4 p v.f ‘1 (f-f’l-l df’. PI 
-03 

Nere, * denotes a convolution integral, and f designates the principle value of the 
integral. This is a consequence of the causality principle which states that the impulse 
response h(t), which is the Fourier transform of the transfer function Y(f), is zero for 
negative time argument, 

for any physical system. 
h(t) = 0 for t < 0, 

In Fourier spectroscopy, the absorption mode spectrum V(f) and the dispersion 
mode spectrum U(f) are computed from the experimentally measured impulse 
response /z(t). Clearly, this general principle must be applicable here as well. Some 
consequences of practical importance will be discussed in this paper. 

In practical Fourier spectroscopy a periodic pulse sequence is used to excite the spin 
system for reasons of sensitivity. It is shown in the section on periodic pulse excitation 
that, in general, the computed absorption and dispersion mode signals are no longer 
related. But, based on a modified impulse response supplemented by a period of equal 
length but with zero amplitude, it is possible to obtain absorption and dispersion mode 
spectra which are related by a discrete Hilbert transform (the latter was introduced in, 
Ref. (4)). 

Practical realizations of Fourier spectroscopy require a discrete representation of the 
impulse response by a finite number of sample values. Here, the discrete periodic 
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Hilbert transform must be applied. In many applications of Fourier spectroscopy, it 
has been found to be convenient to increase the frequency resolution of the computed 
spectra by Fourier-transforming an impulse response supplemented by a much larger 
period with zero amplitude. It is shown in the section on interpolation of Fourier 
transforms that this process is equivalent to a trigonometric interpolation process 
which may improve the presentation but does not add to the available information. 

Finally, the Hilbert transform relationship allows, in certain cases, improvement of 
the sensitivity by a complete utilization of the inherent information, as is shown in the 
final section. It will be assumed in this paper that the impulse response is measured 
directly as it is done in nuclear magnetic resonance Fourier spectroscopy (5, 6). On the 
other hand, the same principles apply as well to optical Fourier spectroscopy where the 
calculation of the spectrum is based on the interferogram which measures the auto- 
correlation function of the transmitted radiation or the crosscorrelation function 
between input and transmitted radiation (7-9). 

In optical applications of Fourier spectroscopy, the assumption of linearity of the 
investigated system is an excellent approximation. But it is well known that nonlinear 
effects are important in nuclear magnetic resonance. Fortunately, they do not affect 
the response to a single strong radio frequency pulse, except for a scaling factor which 
depends in a nonlinear fashion on the strength of the exciting rf pulse, and the Fourier 
transform relationship still holds up to a scaling factor. 

On the other hand, one may ask whether it is still possible to treat the nuclear spin 
system as a linear one when it is excited by a periodic sequence of rather strong rf 
pulses. In fact, real and imaginary parts of the Fourier transform of the periodic impulse 
response are in general not identical to the low power absorption and dispersion mode 
spectra of the investigated system, especially if the pulse spacing T < TZ (as, for example, 
in Figs. 2 and 3). In practical applications of Fourier spectroscopy, however, it is 
desirable to interpret the Fourier transform of this periodic response as an approximate 
absorption and dispersion mode spectrum. Even in cases where this approximation is 
rather bad (e.g. when strong echo effects occur), the impulse response and its Fourier 
transform may still be useful for the detection of weak signals (14, 15). 

From a general point of view, spectroscopy is system identification. This process 
consists of selecting a mathematical model based on the assumed structure of the 
system and of measuring the unknown parameters of this model. For a linear model, 
this parameter identification implies measuring the transfer function (complex spec- 
trum) or the impulse response which is the Fourier transform of it. On the other hand, 
as soon as we attempt to Fourier analyze the impulse response of an arbitrary system 
we implicitly have accepted to approximate this system by a linear model. 

The remaining question is: How appropriate is the selected linear model for th.e 
particular physical system? But this question, which will not be answered in this paper, 
does not affect the presented results which are correct whenever the impulse response 
of a physical system is Fourier transformed, irrespective of possibly nonlinear behavior 
of this system. 

HILBERT TRANSFORM RELATIONSHIP FOR PERIODIC PULSE EXCITATION 

The inherent gain of sensitivity of Fourier spectroscopy can only be realized when 
the system is periodically excited by means of a repetitive pulse sequence (5, 6). The 
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response will be periodic as well, and all information, except for the contributions of 
the random noise, is contained in a single period. For a periodic excitation, the computed 
absorption and dispersion mode spectra are, in general, independent. This can be shown 
as follows. 

A periodic function h’(t) with the period length T contains only harmonics of the 
fundamental frequency l/T. Its Fourier transform is thus represented by an infinite but 
discrete set of Fourier coefficients 

with 
F{hT(t)} = (YT> = {VT + iuy>, --co < I < co, C4] 

T 

y: = 
s 

AT(t) e-i2nct/T dt. 

0 

It can easily be shown that {VT} is the Fourier transform of the even part h:(t) of/zT(f): 

h,‘(t) = )[hT(t) f F-t)], 161 
zF{IZgT(t)> = { vy>. 

On the other hand, i{ UT} is the Fourier transform of the odd part h,T(t) of /z’(t): 

h,T(t) = -$[hT(t) - F-f)], j71 
P-{/q(t)} = i{ UT}. 

It is obvious that in general /z:(t) and h:(t) are independent, and, therefore, there cannot 
exist a relation between the signals {VT} and {UT>. 

Because of the periodicity of the excitation, the causality principle does not apply in 
its common form, Eq. [2]. Real and imaginary parts of the Fourier transform of the 
periodic response are independent. It is now possible to enforce an artificial causality 
principle which then relates the computed absorption and dispersion mode spectrum. 
To this aim, it is necessary to supplement the periodic response function /z’(t), defined 
in the interval 0 < t < T, by the function values for a negative time interval of equal 
length (10): 

h2T(t) = 
i 
AT(t) for 0 G t < T 
o for-T<t<O^ iSI 

The function hZT(t) remains a periodic function but with the period 2T. 
The even and odd parts of h2T(t), 

igT(t) = *[P(t) + h2=(-t)] 
and 

/y(t) = +[iP(t) - q-t)], h9] 
are now connected by the relations 

hiT(t) = 12zT(t) sgn ([t - 2T] mod 2T), 

hzT(t) = hiT(t) sgn ([t - 2T] mod 2T). [lOI 
The relations between AT(t), hzT(t), AiT( and hzT(t) are visualized in Fig. 1. Equation 
[lo] implies that the real and imaginary part of the Fourier transform of h”‘(t), (VFr> 
and { UfT}, must be related by convolution sum of the form 

(UiT) = (-i/2T) (V:T}* P{sgn ([t - 2T] mod2T)). 1111 
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The Fourier transform of (i/2T){sgn([t - 2T]mod2T)}, {A’,>, is given by 

& = (2/7c) sin2 (742)/Z, E = . . . - 2, -l,O, 1,2,. . . 
or explicitly 

{S,} = (2/n){. ~ .o,-l/3,0,-l;O, 1, 0, l/3,0.. .>. 

This is the kernel of a convolution sum which relates U, and V, 

{ iy) = -{ vy}* {SJ = - 2 Vj”’ 4-j, 
j=-m 

{Vf”> = (U;T}*{S,) = 5 U;TSL-j. El31 j=-, 
It was introduced in Ref. (4). This transformation is called the discrete Hilbert tmns- 

form. 
Absorption and dispersion mode signals obtained in a periodic Fourier experiment 

are discrete Hilbert transforms of each other whenever causality is enforced by supple- 
menting the free induction decay signal by a period of equal length but with zero 
amplitude. Fourier transformation of this modified time signal produces twice as many 
Fourier coefficients as the transformation of the original signal. The new values lie 
centered between the original Fourier coefficients. Thus, this process is equivalent to an 
interpolation process. It increases the information content of either absorption or 
dispersion mode signal by the amount of additional information contained in the other 
signal. Both signals now contain the same information. It is interesting to note that 
absorption and dispersion mode signals now consist of two independent sets of inter- 
laced Fourier coefficients. The even numbered coefficients of the absorption mode 
signals form the discrete Hilbert transform of the odd numbered coefficients of the 
dispersion mode signals and vice versa. This is caused by the particular structure of (S,). 
All the even numbered coefficients S1 are zero. 

I h*%) 

h:(t) 

h?(t) 

FIG. 1. The original periodic response J?(t), the modified periodic response F*(t) and its even and 
odd part I$?@), h:‘(t). 
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HILBERT TRANSFORM RELATIONSHIP BASED ON A DISCRETE 
REPRESENTATION OF THE IMPULSE RESPONSE 

For the numerical Fourier transformation, it is necessary to represent the experimental 
impulse response by a discrete, finite sequence of N sample values (hk}N, k = 0, 1, . . ~, 
N - 1, which are taken at equally spaced instances. In the course of the sampling process, 
information is lost necessarily unless the signal is strictly band-limited and the number of 
sample values is taken according to the sampling theorem (3). This information loss may 
be significant in practical applications but it will not be considered further in this paper. 

The Fourier transform of a discrete, periodic time sequence is discrete and periodic 
itself and is represented by the same number N of sample values : 

N-l 
Y, = 1 hk e--f2nkliN, I= 0, 1, . . ., N - 1. D41 

k=O 

Because the sample values h, are real, the relation Y, = Y,-, holds. It implies that there 
are only N/2 independent complex Fourier coefficients. Real and imaginary parts of 
these coefficients are independent, in general, and the absorption and dispersion mode 
signals are unrelated. To enforce artificial causality and a Hilbert transform relationship 
between absorption and dispersion mode signal, it is again necessary to supplement the 
original sequence {hk}N by N zeros to represent the continuation on the negative time 
axis (10): 

{h,jzN = (0, . . . . . . 0, ho, h,, . . . . . . h,&. WI 
Because of the periodicity, it is immaterial whether the zeros are added to the left or to 
the right of the original sample values. 

In complete analogy to the preceding section, it is possible to separate even and odd 
part of {hkjzN. To obtain a unique relation between them, however, it is additionally 
necessary to suppress ho and put it equal to zero. The value ho will, finally, give the 
integral of the absorption mode signal. This value cannot be obtained by a finite Hilbert 
transform starting from the dispersion mode signal. 
Thus, 

and 
{hd;N = ${o, h-1, b--Z> . . ., h,, 0, 4, . . ., hN-1) WI 

{hk}zN = *{O, -hN-l, e. ., -hl, 0, hl, . . . I.. h,-,] 
with the relation 

{hk)ifN = {sgn (W hkg)2N. 1171 
The absorption mode signal {VL}2N is the Fourier transform of the symmetric part 
ChJ;N and the dispersion mode signal i{U,}2N is the Fourier transform of the anti- 
symmetric (hk}u . 2N This gives finally the relations 

2N-1 
( Ul}"" = -( V~)2N*(S~}"N = - jzo Vj St-j, 

ZN-1 
{V~}"" = { U~}2N*{S~}2N = 1 Uj S,-j. 

j=O 
with the kernel of this transformation 

S, = (l/N) sin2(nZ/2) cot (742N). EN 
This transformation may be called the discrete periodic Hilbert transform (II). The 
functional form of this transformation is very similar to the discrete Hilbert transform, 
Eq. 1121. There are again two independent sets of Fourier coefficients in each of the two 
signals. { Y,}N and ( Y,}zN are related by VF = Vzy and UF = U$y. 
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In the case of a discrete representation of the impulse response, it is particularly 
instructive to follow the distribution of information among the two signals on the 
occasion of the Fourier transformation. In a Fourier transformation without using the 
mentioned interpolation procedure, the N degrees of freedom contained in the N real 
sample values of the impulse response are transformed into N/2 + 1 independent 
Fourier coefficients contained in the absorption mode signal, V,, V1, . . . VN,2, and into 
N/2 - 1 independent Fourier coefficients of the dispersion mode signal, U,, U,, , . r 
U,,,-,. The values U, and UNiZ are necessarily zero and the coefficients with higher 
index values are related to the listed coefficients. It is clear that neither (V,)” nor (UJN 
represent the complete information content of the impulse response (h,}N, and it is 
obvious that {V,}” and (U,}” are independent. 

The Fourier transformation of the zero-supplemented impulse response, however, 
produces N independent Fourier coefficients for the absorption mode signal, Vo, VI, 
V 2, I.. VNml. It is quite obvious why the dispersion mode must contain one degree of 
freedom less than the absorption mode signal. The dispersion mode signal and the 
kernel function of the discrete periodic Hilbert transform are both antisymmetric 
functions with zero integral. This implies that the convolution sum (S,)2N*(Ul)2N must 
also have zero integral. The integral of the absorption mode signal which must be 
different from zero is this additional missing degree of freedom. It can never be obtained 
through a discrete periodic Hilbert transformation. 

FURTHER INTERPOLATION OF FOURIER TRANSFORtiS 

In some cases, it may be desirable to compute further intermediate values of the 
absorption or dispersion mode spectrum to increase the frequency resolution. This can 
easily be achieved by a Fourier transformation of the original set of N sample values of 
the impulse response supplemented by (2n - 1) N,n > 1, virtual samples of zero 
amplitude (5). It is clear that this process can not further increase information of either 
signal because each signal already contains all of the information gained by the par- 
ticular experiment. This process is strictly an interpolation procedure which may be 
desirable for a smooth representation of the spectrum or to provide a convenient 
measurement of accurate peak positions. 

It will now be shown that this process is entirely equivalent to a simple trigonometric 
interpolation procedure (23). This may be seen as follows: The Fourier coefficient 
Y(f) for an arbitrary frequency f is obtained in this procedure by the evaluation of the 
expression 

N-l 
y(f) = 1 hk ,z+nf k12Ne 

CZOI 
k=-N-t1 

The extension of the lower limit of the summation in Eq. [ZO] is essential to obtain a real 
interpolation function, although the values of h,, k-c 0, are all zero. 12, can now be 
expressed by the discrete Fourier coefficients { YL}2N, 

N-l 
y(f) -- c 

k=-N+1 

& ‘2 y, ei2nlk/2Ne-~2~flc12N 

ZN-I N-l 

r.z 
c 

r,l 2 

ZN-1 
e-i2n(f-W2N = ,=c, y, I(f - 2). @I] 

E=O 
2N 

k=-N+l 
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This expression may be interpreted as the result of a convolution integral of a discrete 
function formed by the Fourier coefficients Y, and of a continuous interpolation func- 
tion of the form 

I(f) =& Nj+ e-i2nfk/2N 

k=-N+l 

= (l/N) cos ((N - 1) 7cfl2N) sin (rcf2)/sin (nf2N) + 1/2N. c24 
This is the trigonometric interpolation function for a periodic sequence of sample 
values. Interpolation must be extended only over one period. For N -+ co, we obtain 
the well known interpolation function for an aperiodic sequence of sample values, 

lim 1(j) = sin (rrf)/r$= sine(f). r23] 
N+m 

This shows clearly that the interpolated values Y(f) are simple functions of the 
significant Fourier coefficients { Y,}2N and do not provide additional information. It is 
important to notice that the interpolation function I(f) is real. This implies that the 
interpolation process does not mix absorption and dispersion mode signals Inter- 
polation processes of the real or of the imaginary part of the transfer function are 
independent. On the other hand, when interpolation is based on the original Fourier 
coefficients ( YL}N, the corresponding interpolation function would be complex, because 
here interpolation requires the information contained in the quadrature component, 
as well. The interpolation function for ( Y,jN is given by 

r(f) = (1 /ff) (1 - e-i2nf) (1 - e-iznf/N)-l, Dal 

When a fast Fourier transform algorithm is used for the computation of n inter- 
polated values between adjacent original Fourier coefficients, nN sample values, 
including (n - l)Nzeros, must be transformed. The number n is thereby limited by the 
capacity of the computer memory. For this reason and to minimize computing time, it 
may in some cases be more convenient to apply direct interpolation to { YL}“” or (U,)“” 
by means of Eq. [21] or to ( Y,}N by means of Eq. [21a]. Here, the summation may be 
limited to a few terms to speed up computation. It is also possible to employ conven- 
tional polynomial interpolation techniques (IL?, 1.3) to interpolate {V,}“” or (UJ”“. 

When interpolation is effected by means of a zero-supplemented impulse response, 
it is important to first subtract the mean amplitude from all original sample values 
to avoid a discontinuity in the modified impulse response. This would cause strong 
oscillations in the transformed spectrum. 

EXAMPLE OF AN INTERPOLATED FOURIER TRANSFORM 

A rather extreme example will be considered to clarify some of the results presented 
in the preceding sections. It is assumed that the impulse response of a nuclear spin 
system in an inhomogeneous static magnetic field is recorded. The inhomogeneity 
shall cause a line broadening by a factor 100 such that l/rf = 100/T,. It is further 
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0 TSec 

FIG. 2. Computed impulse response signal for a magnetic resonance system obeying Bloch’s equations 
with T,/Tz = 100, TJT, = 1, T/T; = 3, flip angle a = 75” and for a resonance line coinciding with a 
harmonic of the pulse sequence. 

A 

c 

FIG. 3. Fourier transform of the impulse response of Fig. 2. (A) Cosine transform of the original 
impulse response. (B) Cosine transform of the impulse response supplemented by N values of zero 
amplitude. (C) Cosine transform of the impulse response supplemented by 3Nvalues of zero amplitude. 
(D) Sine transform of the original impulse response. 
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assumed that T1 = T, and that the flip angle employed is a = 75”. The pulse separation 
T is selected to be T = 3Tz, and the resonance is supposed to coincide with one of the 
harmonics of the pulsing sequence. The obtained response, represented by 100 sample 
values, is shown in Fig. 2. It is characterized by the occurrence of a very strong echo or 
refocusing effect immediately before the next applied rf pulse (14). This is clearly an 
artifact of the measuring technique, i.e., caused by the close pulse spacing, T e T,. 

The corresponding absorption mode spectrum without interpolation computed from 
this free induction decay is shown in Fig. 3A. Absorption is rather weak because the 

w 
FIG. 4. Cosine-Fourier transform of the backfolded impulse response of Fig. 2 (compare Eq. p4]). 

(A) Fourier transform of the sequence of N/2 values. (B) Fourier transform of the sequence supple- 
mented by N/2 values of zero amplitude. (C) Fourier transform of the sequence supplemented by 3N/2 
values of zero amplitude. 

original impulse response is almost antisymmetric and its symmetric part has very low 
amplitude. The addition of N zero values to the impulse response and the cosine- 
Fourier transform of the 2N samples produces the absorption mode spectrum of 
Fig. 3B. The additional interpolated values represent the discrete periodic Hilbert trans- 
form of the original dispersion mode spectrum (Fig. 3D) which has a comparatively 
very high amplitude due to the particular antisymmetric shape of the impulse response. 
This causes the extreme oscillation in Fig. 3B. This trace contains now all the informa- 
lion of the Nvalues of the recorded impulse response. Further interpolation, by addition 
of another 2N zero values to the impulse response, does not drastically change the 
absorption mode signal anymore and does not add information (Fig. 3C). 

The undesirable intensity oscillation shown in the interpolated absorption mode 
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spectra can be avoided by Fourier transformation of a modified sequence obtained from 
the impulse response {hk}N : 

(hmjN” = (h,, hl - hN-l, . e .) kN/2-l - hNj2+1} (for even N), PI 
which is obtained by subtracting the inverted second half of the sequence from the first 
half. The envelope of this modified sequence goes smoothly to zero towards its upper 
end. The results of the Fourier transform of this modified sequence are shown in Fig. 4A 
without interpolation, in Fig. 4B with single interpolation, and in Fig. 4C with double 
interpolation. It is seen that in this case no drastic changes occur due to interpolation. 
Some slight line broadening must be put up with, but it is considerably weaker than 
any conventional filtering process would produce in an attempt to filter out the oscilla- 
tions shown in Figs. 3B and 3C. A smooth, almost Lorentzian shape is obtained 
finally. 

SENSITIVITY ENHANCEMENT 

The Fourier transformation of the zero-supplemented impulse response (/z,)“~ yields 
a gain in information compared with the Fourier transform of the original impulse 
response (!Q}~. This gain can also be interpreted in terms of a sensitivity improvement. 

The maximum achievable signal-to-noise ratio of a signal of known line shape super- 
imposed by random noise of known spectral density is obtained by means of a matched 
filter. For white random noise, it can be shown that the maximum signal-to-noise ratio 
achievable per unit time is given by (6) 

where Wis the power spectral density of the random noise which is constant over the 
whole frequency range. 

In the case ofthe Fourier transform of the original impulse response {h,JN, the summa- 
tion in Eq. [25] runs over N/2 independent Fourier coefficients. On the other hand, for 
the zero supplemented impulse response, the summation has to be extended over N 
Fourier coefficients. Thus, the maximum possible sensitivity enhancement is given by 

This holds because the power spectral density of the random noise is the same in both 
cases. The N Fourier coefficients of the random noise remain uncorrelated during this 
interpolation process. It may seem possible to even further enhance sensitivity by 
further interpolation as described previously. This is actually impossible because the 
further Fourier coefficients are correlated. At maximum N Fourier coefficients are 
independent. Thus, after the first interpolation, no further gain is possible. 

For an impulse response signal which decays almost to zero during the pulse spacing 
ir, e.g. for T > 3T2, symmetric and antisymmetric part are essentially equal in signal 
energy. Thus the signal energy of the sequence { V,t”” has about twice the signal energy 
of the sequence { V,jN. In this case, the sensitivity improvement is about a factor a/z. 

If, however, the impulse response signal is to a high degree antisymmetric as for 
example in Fig. 2, the enhancement of the inherent sensitivity by the first interpolation 
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in the absorption mode signal is much more striking as can be seen by comparing Fig. 
3A with Fig. 3B. 

The gain in sensitivity by central interpolation relies on the fact that after inter- 
polation the number of samples within a line width is higher such that more filtering 
can be tolerated without excessive signal distortion. Filtering is effective only when 
the Fourier coefficients of the random noise are uncorrelated. As soon as apodization 
of the impulse response is employed for enhancement of sensitivity, this gain is partially 
anticipated and the Fourier coefficients of the random noise become partially correlated. 

This also implies that for the case that no interpolation is employed filtering in the 
time domain by apodization is more effective than filtering in the final spectrum by 
means of a convolution process. In the case of an interpolated signal, the two filtering 
procedures are equivalent. 
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