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Effect of Windowing and Zero-Filled Reconstruction
of MRI Data on Spatial Resolution and Acquisition
Strategy

Matt A. Bernstein, PhD,* Sean B. Fain, PhD, and Stephen J. Riederer, PhD

Standard, MR spin-warp sampling strategies acquire data
on a rectangular k-space grid. That method samples data
from the “corners” of k-space, i.e., data that lie in a region
of k-space outside of an ellipse just inscribed in the rect-
angular boundary. Illustrative calculations demonstrate
that the data in the corners of k-space contribute to the
useful resolution only if an interpolation method such as a
zero-filled reconstruction is used. The consequences of
this finding on data acquisition and data windowing strat-
egies are discussed. A further implication of this result is
that the spatial resolution of images reconstructed with
zero-filling (but without radial windowing) is expected to
display angular dependence, even when the phase- and
frequency-encoded resolutions are identical. This hypoth-
esis is experimentally verified with a slit geometry phantom.
It is also observed that images reconstructed without zero-
filling do not display the angular dependence of spatial res-
olution predicted solely by the maximal k-space extent of the
raw data. The implications of these results for 3D contrast-
enhanced angiographic acquisitions with elliptical centric
view ordering are explored with simulations. J. Magn. Reson.
Imaging 2001;14:270–280. © 2001 Wiley-Liss, Inc.
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STANDARD, TWO-DIMENSIONAL spin-warp data sam-
pling strategies acquire lines of MR raw data, each at a
particular value of a stepped phase-encoding gradient.
These lines of data fill a rectangular k-space grid, which
then yields an MR image after reconstruction with a
two-dimensional discrete Fourier transform. Here it is
explored whether the data in the “corners” of the k-
space grid contribute to the useful spatial resolution of
MR images. The corners are defined here as the regions
outside an ellipse inscribed in the rectangular k-space.

The data in the corners of k-space occupy a large
fraction of the total sampled k-space. For example, the
area of the inscribed ellipse is p kx,max, ky,max, where

kx,max and ky,max are the extents along the semimajor
and semiminor axes, respectively. Since the area of the
rectangle is 4 kx,max, ky,max, the corners of k-space com-
prise 1 – (p/4), or approximately 21.5%, of the total
area. A similar calculation for the three-dimensional
case shows that the corners comprise 1 – (p/6), or
approximately 47.6%, of the volume of k-space. These
relatively large percentages suggest that an analysis of
the value of the data in the corners of k-space has
practical implications for the selection of acquisition,
windowing, and reconstruction strategies. For example,
alternative acquisition strategies such as spiral (1–3),
spiral-ring (3), circular echo-planar imaging (EPI) (3),
hexagonal (4), and variable encoding time (VET) sam-
pling (5) might be more efficient than Cartesian sampling,
in part because they need not acquire the data in the
corners of k-space. Moreover, there might be indepen-
dent reasons for not acquiring the corner data, such as
the reduction of acoustic noise (6).

Even if the data in the corners of k-space are ac-
quired, a windowing function (7,8) is often used to apo-
dize it. Windowing can increase the signal-to-noise ra-
tio (SNR), and reduce truncation artifacts, often at the
cost of reducing spatial resolution (9,10). The func-
tional form of the windowing kernel, and its parameters
and structure are all engineering choices. Determining
whether the corners of k-space contribute to the useful
spatial resolution is helpful for guiding these selections.

It will be shown that image interpolation plays a role
in determining the value of the data in the corners of
k-space. Zero-filling (11,12) is an effective and widely
used reconstruction method for image interpolation, so
it is the sole method considered here. Alternative meth-
ods include filling the raw data with noise, rather than
zeroes (13). Although zero-filling does not add any in-
formation content to the raw data, it can effectively
increase spatial resolution by providing overlapping
voxels, thereby reducing partial volume artifacts.

THEORY

The effect on spatial resolution of data in the edges and
corners of k-space can be illustrated with the calcula-
tions presented below. In order to produce simple, an-
alytical results, these examples were based on idealized
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raw data sets that are not readily obtained with practi-
cal phantoms. Overly broad inferences of the results to
more complicated geometries should not be drawn from
these calculations. Instead, the purpose of these calcu-
lations is to motivate the experimental investigation
and discussion that follows.

Illustrative Calculation: the Edge of k-Space

Consider a two-dimensional k-space of size Nx 3 Ny,
with Nx 5 Ny 5 N, and in which there are only two
nonzero raw-data points. Placing one point at the cen-
ter of k-space and the other horizontally displaced to
the edge of k-space, the raw data can be expressed as

Di, j 5
1
2 SdS i,

N
2D z d~0, j! 1 dS i,

N
2D z dSN

2
, jDD ,

i, j 5 0, 1, 2, . . . , N 2 1 (1)

where d is the Kronecker delta (14) (i.e., d(m,n) 5 1 if m 5
n, 0 otherwise), i 5 N/2, j 5 N/2 is the center of k-space,
and half-pixel effects are neglected since N @ 1. This
placement of the two raw data points represents the
maximal horizontal resolution available without alias-
ing with this N 3 N k-space, since the two points are
separated by the Nyquist frequency in the readout di-
rection, FN 5 Nx/2. The resulting magnitude image can
be reconstructed with a two-dimensional discrete Fou-
rier transform, yielding

In,m 5 UcosSpm
2 DU, n, m 5 0, 1, 2, . . . N 2 1. (2)

The magnitude image represented by Eq. [2] only
takes on the values 0 and 1, and displays the expected
pattern of vertical bars. Figure 1a shows a portion of the
image, with N 5 256. If the raw data in Eq. [1] are
zero-filled, and reconstructed on a 2N 3 2N array, the
resulting magnitude image is

In,m 5 UcosSpm
4 DU, n, m 5 0, 1, 2, . . . 2N 2 1. (3)

The magnitude image represented by Eq. [3] now
takes on the values 0, 1, and (1/=2). Although the
resulting image (Fig. 1b) is smoother due to the sinc-
interpolation, there is no improvement in resolution
compared to the original image, Fig. 1a.

Illustrative Calculation: the Corners of k-Space

Next, consider a second case with only two nonzero
raw-data points. Again placing one point at the center of
k-space, and this time placing the other in the upper-
left corner yields

Di, j 5
1
2 Sd~i, 0! z d~0, j! 1 dS i,

N
2D z dSN

2
, jDD ,

i, j 5 0, 1, 2, . . . , N 2 1. (4)

This placement of the two raw data points models the
maximal diagonal resolution. The resulting magnitude
image can be reconstructed with a two-dimensional
discrete Fourier transform, yielding

In,m 5 UcosSp
n 1 m

2 DU, n, m 5 0, 1, 2, . . . N 2 1. (5)

The magnitude image represented by Eq. [5] again
only takes on the values 0 and 1. However, it displays a
checkerboard pattern rather than the expected pattern
of diagonal bars. Figure 2a shows a portion of the im-
age, in which we have again set N 5 256. If the raw data
in Eq. [4] are zero-filled, and reconstructed on a 2N 3
2N array, then the resulting image is

In,m 5 UcosSp
n 1 m

4 DU, n, m 5 0, 1, 2, . . . 2N 2 1 (6)

The magnitude image represented by Eq. [6] now
takes on values 0, 1, and (1/=2). Unlike the compari-
son of Figures 1a and b, now zero-filling does improve
the spatial resolution; the diagonal bars are clearly re-
solvable in Figure 2b. This illustrative calculation sug-
gests that data in the corners of k-space do contribute

Figure 1. a: A portion of the image represented by Eq. [2],
displaying maximal horizontal resolution. b: Analogous por-
tion of the image represented by Eq. [3]. In this case, zero-
filling smoothes the image, but does not improve the spatial
resolution.

Figure 2. a: A portion of the image reconstructed from data in
the corner of k-space, Eq. [5]. Instead of the expected set of
diagonal bars, a checkerboard pattern results. b: Analogous
portion of the image represented by Eq. [6]. Zero-filling im-
proves the diagonal resolution.
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to the usable resolution of an image, but only when an
interpolation method such as zero-filling is used. Inter-
polation of the magnitude image in Figure 2a cannot
break the symmetry along the two main diagonals of the
checkerboard pattern, and hence cannot provide usable
resolution from data in the extreme corner of k-space.

Finally, consider the case of two points separated by
a distance in k-space that is numerically equal to the
Nyquist frequency along the readout direction, and the
separation of which is also diagonally oriented:

Di, j 5
1
2SdS i,

N
2 S1 2

1

Î2DD z dSN
2 S1 2

1

Î2D, jD
1 dSi,

N
2D z dSN

2
, jDD, i, j 5 0, 1, 2, . . . , N 2 1 (7)

This case is of interest because the first point is near the
margins of data excluded by a radial apodizing window.
(Reducing the amplitude of that point by 50% to ac-
count for the attenuation of a radial window changes
the result quantitatively but not qualitatively, so it does
not change the main inferences drawn from this calcu-
lation). The resulting magnitude image is

In,m 5 UcosSp
n 1 m

2Î2 DU, n, m 5 0, 1, 2, . . . N 2 1. (8)

The magnitude image now takes on numerous values,
and Figure 3a displays the desired pattern of diagonal
bars. As can be seen in Figure 3a, however, the bars
display a “beading” pattern reminiscent of the checker-
board pattern in Figure 2a. There is also a low-fre-
quency modulation with a period of approximately
seven bars. With the zero-filled reconstruction, the re-
sulting image is

In,m 5 UcosSp
n 1 m

4Î2 DU, n, m 5 0, 1, 2, . . . 2N 2 1. (9)

As demonstrated in Figure 3b, the beading artifact is
reduced and the low-frequency modulation is virtually
eliminated, as desired, by the zero-filled reconstruction.

Unlike the magnitude image illustrated in Figure 2a,
the magnitude image in Figure 3a can be improved by
interpolation. This is consistent with previously de-
scribed techniques that are based on processing mag-
nitude images, and successfully employ zero-filling or
sinc-interpolation (15–17).

Radial and Separable Windowing Geometries,
and Their Effect on the Corners of k-Space

These illustrative calculations suggest that the effect of
zero-filled reconstruction is of particular interest when
there are data occupying the corners of the k-space.
Whether such data are present depends not only on the
acquisition strategy, but also on the windowing applied
prior to reconstruction. In digital signal processing
(DSP), windows are used to smoothly taper, or apodize,
the raw data (7). Apodization reduces or eliminates dis-
continuities between k-space replicates, thereby reduc-
ing truncation artifact (9,10). Apodization can also im-
prove SNR in the image, since the noise power is
typically distributed uniformly throughout k-space,
while the signal is typically concentrated near the k-
space center, which is nearly unattenuated by the win-
dow (8,10). (This is in distinction to zero-filling the re-
construction, which can correlate the noise, but does
not change the SNR.) Many different windowing func-
tions are used in DSP, and Ref. 7 provides a thorough
compilation of one-dimensional window kernels.

Most MRI data acquisitions are two- or three-dimen-
sional, so a two- or three-dimensional window is re-
quired. Two possible extensions from one to multiple
dimensions are the radial and separable geometries
(18–20). Consider, without loss of generality, the two-
dimensional case. Given any one-dimensional window-
ing kernel, W1d (u), where the argument u is normalized
so that window full width at half maximum (FWHM)
occurs at u 5 1, the two-dimensional radial window can
be written

Wradial~kx, ky! 5 W1dF ÎS kx

kx,FWHM
D 2

1 S ky

ky,FWHM
D 2G .

(10)

Normally the k-space FWHM values are simply se-
lected to be half the total extent of the k-space in each
respective direction: kx,FWHM 5 kx,max, ky,FWHM 5 ky,max.
The two-dimensional separable window can be written

Wseparable~kx, ky! 5 W1dS kx

kx,FWHM
D 3 W1dS ky

ky,FWHM
D .

(11)

As in Ref. 19, the MR system we used for our exper-
iments employs a radial geometry window, with a Fermi
function for the kernel

W1d~u! 5
1

1 1 e~u 2 1!/T ,

Wradial~kx, ky! 5
1

1 1 expSÎkx
2 1 ky

2 2 1
T D , (12)

Figure 3. a: A portion of the image represented by Eq. [8].
There is a “beading” artifact and a low-frequency modulation.
b: Analogous portion of the image reconstructed with zero-
filling Eq. [9]. Zero-filling reduces the beading artifact and
virtually eliminates the low-frequency modulation.
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where T is a transition width that is set to 10/(N/2), or
0.07813 when N 5 256. The Fermi window is charac-
terized by a flat passband, and exponential decay in the
transition band.

In general, for a given one-dimensional windowing
kernel, W(u), the separable geometry admits more of the
data from the corners of a two-dimensional k-space
than the radial geometry. For example, consider the
raw data point displaced from the center k-space along
the diagonal, and separated from the center of k-space
by the Nyquist frequency along the readout direction.
The vector coordinates of this point can be represented

as Skx,max

Î2
,

ky,max

Î2 D, the point (0,0) is the center of k-

space. Substituting into Eqs. [10] and [12] yields

WradialSkx,max

Î2
,

ky,max

Î2 D
WseparableSkx,max

Î2
,

ky,max

Î2 D 5
W1d~1!

W1d
2 S 1

Î2D
5

S12D
0.9772 < 52.4%,

(13)

where the numerical values are obtained from the spe-
cific form of W1d in Eq. [12]. For the analogous three-
dimensional calculation, the resulting ratio is 50.7%.
For every commonly used window kernel, the ratio in
Eq. [13] is less than unity, indicating that the radial
geometry apodizes the corners of k-space more severely.

The SNR increase (8) resulting from the application of
a radial Fermi window can be estimated as follows. If
the object fills the field of view (FOV), the window apo-
dizes only a negligible amount of low-frequency signal
(since T ! 1 in Eq. [12]). It is then reasonable to expect
that the SNR increase can be calculated by directly
comparing the square root of k-space areas:

SS
ND

NoWindow

SS
ND

RadialWindow

5 Î1
4 E

y521

1 E
x521

1 dxdy

1 1 expSÎx2 1 y2 2 1
T D

(14)

The integral in Eq. [14] can be evaluated with Monte
Carlo methods (21) and yields the value 0.87.

For a fixed FWHM of the one-dimensional window
kernel, the radial geometry has higher SNR than the
separable geometry, since the former apodizes a greater
fraction of the noise in the corners of k-space. For a
two-dimensional reconstruction and the Fermi window
kernel of Eq. [12], calculations similar to those in Eq.
[14] show that the FWHM of the separable window must
be decreased by 11% compared to the radial geometry
to recover this SNR deficit.

Despite its unfavorable SNR properties, the illus-
trative calculations suggested that the separable ge-
ometry can provide superior diagonal resolution
when zero-filling is used. This is also consistent with
experimental results presented. Figure 4 further
demonstrates this effect with grayscale images of
point spread functions.

It has been noted that spatial resolution is nonisotro-
pic for Cartesian sampling (20). Based on our theoreti-
cal results, we explored this effect further. In particular,
we experimentally tested the dependence of the spatial
resolution on the angle that a line pair makes with
respect to the phase-encoded direction, when the fre-
quency- and phase-encoded pixel sizes are equal. Any
increased spatial resolution along the image diagonals
is due to the additional, unapodized k-space extent
provided by the data in the corners.

Figure 4. The point spread functions (calculated with zero-filling) for (a) no window function, (b) separable Fermi window, and
(c) radial Fermi window. It is apparent when comparing a and b to c that the angular dependence of the spatial resolution is
greatly diminished when using a radial window. The residual side-lobes visible along the x and y directions in c result because
the radial window has a relatively large value (0.5) at the points (kx,max, 0) and (0, ky,max). The ratios of peaks of the central to first
sidelobe are 4.3, 4.9, and 6.9 for a, b, and c, respectively.
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METHODS

A resolution phantom with multiple groups of five
grooves forming line-pairs with center-to-center spac-
ing of 1.0, 1.20, 1.60, 2.0 mm, etc., was imaged with a
1.5T Signa scanner (General Electric Medical Systems,
Milwaukee, WI) with a 256 3 256 matrix, 122 Hz/pixel
receive bandwidth, and an FOV of 180 mm. Coronal,
7-mm-thick, full-echo gradient-recalled echo images
were acquired each time the phantom was manually
positioned from u 5 0–45°, in steps of 5 6 1°. (To verify
that the differences between the phase-encoded and
readout directions (such as chemical shift and T2-re-
lated blurring) were negligible, an image was also ac-
quired at the 0° orientation with the phase and fre-
quency directions swapped.) Four reconstructions were
performed: with and without zero-filling to 512 3 512,
and with and without a radial apodizing window (Eq.
[12]). The minimum spacing (mm/line pair) resolved in
the resulting images was estimated independently by
the three authors. Although zero-filling to 1024 3 1024
can provide small incremental gains (11,12), we did not
explore that method here since it increases the image
size an additional factor of 4, and therefore is not widely
used at this time.

Images of the internal auditory canal (IAC) of a nor-
mal volunteer were obtained with a 3D fast spin-echo
pulse sequence with a 76-mm-diameter loop surface
coil. Thirty-two 1-mm-thick sections were acquired in
the axial plane. The TR/TE was 2000/104 msec, matrix
was 256 3 256, echo train length was 64, and receiver
bandwidth was 244 Hz/pixel. The scan time for the
single signal average was 4 minutes and 21 seconds. As
in the phantom experiment, four reconstructions were
performed: with and without zero-filling to 512 3 512,
and with and without a radial apodizing window (Eq.
[12]). Unlike the phantom experiment, some blurring in
the phase-encoded direction was expected due to the
long echo train (i.e., 64) of this acquisition.

RESULTS

Figure 5a and b show the measured resolution for each
of the four reconstructions (with and without zero-fill-
ing, and with and without radial windowing), where the
smaller the value (in mm/line pair) the better the reso-
lution. The error bars are the SD of the estimates of the
three authors. If the SD was less than 0.025 mm,
60.025 mm was used for the error bar instead, since it
is an estimate of the error due to the discrete spacing of
the line pair groups in the phantom. Also plotted on Fig.
5a and b is a dotted curve labeled “cosine reference.”
This curve is determined by the relation

resolutionS mm
linepairD 5 2Dx cos u, (15)

where Dx 5 180 mm/256 5 0.703 mm is the pixel width
(and height) prior to zero-filled interpolation. Equation
[15] represents an estimate of the expected resolution,
in which the factor cosu accounts for the angular de-
pendence of the maximal k-space extent for a “square”
k-space. The factor of 2 in Eq. [15] accounts for the

observation that to clearly resolve a line pair, there
must be at least one pixel of clear space between the
pair, so the center-to-center spacing of the pair is at
least two pixels.

Figure 5a shows that the measured spatial resolution
of unwindowed, zero-filled images significantly im-
proves as the angle u of the line pairs is increased in the
range of 30–45°. The radially windowed zero-filled im-
ages, however, show little or no angular dependence of
resolution in this angular range, which is consistent
with the hypothesis that the data in the corners of
k-space cause the angular dependence. The resolution
in images reconstructed without zero-filling (Fig. 5b)
does not show as strong an angular dependence. We
believe that the resolution in these images is limited by
partial volume effects.

Figure 6a–d show magnified portions of the images
acquired at u 5 45°. Note that without zero-filling, the
beading artifact is apparent in the bar patterns and at
the edge of the phantom, especially when there is no
windowing (Fig. 6b). The smallest group of five bars is
only clearly resolved in Figure 6d, which was recon-
structed with zero-filling and no windowing. The cost of
the improved resolution is apparent from this compar-
ison: Figure 6d has the most severe truncation arti-
facts. We measure that removing the radial Fermi win-
dow decreases the SNR by 17 6 2% for an object that
fills the FOV. This value is in reasonable agreement
with the theoretical value of 13% for an object that fills
the entire FOV, which was calculated with Eq. [14].

Figure 7a–d shows magnified portions images of the
internal auditory canal (IAC) of a normal volunteer. The
four reconstruction methods used were the same as in
Figure 6: with and without windowing, and with and

Figure 5. a: Measured resolution as a function of angle, with
a zero-filled reconstruction. One set of data was apodized with
a radial windowing function. b: Measured resolution as a func-
tion of angle reconstructed without zero-filling. One set of data
was apodized with a radial windowing function.
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without zero-filling. Axial, targeted maximum intensity
projections are also displayed for each reconstruction
method. The IAC was selected because it is a small
structure, which is often imaged with high spatial res-
olution. It has multiple groove and loop structures, and
thus can illustrate a clinical application of some of the
points raised in this study. A comparison of Figure 7a
and d illustrates that zero-filling reduces the beading
artifact in the semicircular canals, and increases the
sharpness of the scala of tympani and nerves. As in
Figure 6c and d, Figure 7c shows increased SNR and
reduced sharpness compared to Figure 7d.

Figure 6. Magnified portions of u 5 45° phantom images. a: Radially windowed, and without zero-filling. b: No window, again
without zero-filling. Note the beading artifact on both images, and the improved SNR on a. c: Radially windowed with zero-filling.
d: No window, again with zero-filling. Note the smallest group of five bars is resolved only in d. Also note the increase conspicuity
of the truncation artifact (arrows) and noise on d.

Figure 7. Magnified portions of images of the internal audi-
tory canal. The top row shows a single axial section from the
3D set, and the bottom row shows an axial, maximum inten-
sity projection. a: Radially windowed without zero-filling. b: No
window, again without zero-filling. c: Radially windowed with
zero-filling. d: No window, again with zero-filling. Note the
reduced beading artifact in the semicircular canals, and the
improved sharpness of the scala tympani (i.e., the tympanic
canal of the cochlea) in d compared to a.

Windowing and Zero-Filling of MR Data 275



Figure 7.

276 Bernstein et al.



Figure 8 shows a comparison of the magnified portion
of the phantom images from Figure 6 at u 5 0° and 45°
phantom images with zero-filling, and without window-
ing. This comparison of images acquired at these two
angles demonstrates maximal difference in observed
spatial resolution. In agreement with the graph in Fig-
ure 5a, the image acquired with u 5 45° has superior
resolution, providing experimental verification that
spatial resolution is indeed angle dependent.

DISCUSSION

The benefits of zero-filling described here can be ex-
plained by, and are completely consistent with, previ-
ous work emphasizing the reduction of partial volume
effects (11,12). We believe our discussion of square vs.
circular k-space acquisitions is also consistent with
previously reported work based on point-spread func-
tion analyses (20,22–23). The nonisotropic nature of
the angular dependence of resolution with Cartesian
sampling was commented upon by Maudsley et al (20)
in the context of spectroscopic imaging. To our knowl-
edge, however, we are presenting the first experimental
results (except for our own preliminary work (24)) on
the angular dependence of spatial resolution, and are
the first to demonstrate that the expected diagonal res-
olution gains are not necessarily realized without spe-
cial attention to the data reconstruction.

Several inferences with practical implications can be
drawn from the results presented here: 1) For data
reconstructed without zero-filling, radial window geom-
etry is a reasonable choice since the corners of k-space
contribute to the noise but not to the usable resolution.
2) For data reconstructed with zero-filling, separable
windowing geometry offers the advantage of admitting
more of the corner data, which can improve spatial
resolution, while simplifying computation by allowing
window application on a row-by-row basis. 3) If a zero-
filled reconstruction is not used, scan time is wasted
when acquiring data in the corners of k-space. In this
case, methods such as spiral acquisitions have an in-
trinsic efficiency advantage. Conversely, if zero-filling is
used, and the corner data are not apodized, acquiring

corner data improves the spatial resolution, but the
improvement is angle dependent.

We qualify all of these inferences by emphasizing that
we have presented a somewhat limited set of object
geometries in this work.

As an example of the practical implications of this
work, the basic concepts outlined can be applied to a
simulation of a contrast-enhanced, three-dimensional
MR angiography acquisition. Because of the large frac-
tion of k-space volume they occupy, the corners of k-
space play an important role in three-dimensional ac-
quisitions. In addition, it is relatively straightforward to
reduce acquisition time by excluding corner data. This
can be accomplished simply by not acquiring selected
ky-kz views. We investigated what happens when we
either acquire or exclude corner data, under the con-
straint that the scan time is held fixed. When the corner
data are excluded, the “extra” acquisition time can be
used to acquire a larger k-space ellipse, thereby de-
creasing the voxel size (22,23). This procedure has a
proportionate decrease in SNR. To increase its practical
relevance, our simulation used elliptical centric view
ordering (25,26), and an empirically fitted (27) uptake
curve for the gadolinium bolus.

Figure 9a shows a numerically generated bull’s-eye
pattern that was used to assess spatial resolution, and
its angular dependence for the simulation of the con-
trast enhanced scan. This pattern was Fourier trans-
formed onto a 1024 3 1024 grid to represent an ideal
k-space for the bull’s-eye. That k-space was sampled in
two separate simulations, using a phase- and slice-
encoding matrix size adjusted to maintain a total scan
time of 48 seconds, assuming a constant TR of 6.6
msec. A 15.0-cm (phase) 3 6.0-cm (slice) FOV was as-
sumed for both experiments.

For both simulations, the k-space data from the re-
sampled bull’s-eye phantom were modulated by the
time-dependent intensity of an empirically fit bolus pro-
file. Correct synchronization of the three-dimensional
scan was assumed, i.e., the start of acquisition at the
center of k-space corresponded to peak contrast en-
hancement. The empirically fit bolus profile used was
measured in the carotid artery of a patient after a 20 cc

Figure 8. Zero-filled, unwindowed phantom images. Comparison of the smallest group of five bars at (a) 0° and (b) 45°,
displaying the angular dependence of resolution. Note that in addition to blurring, image a apparently depicts only four of the
five bars.
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injection of Gadoteridol (Prohance, Bracco Diagnostics,
Milan, Italy) injected at 3 cc/second (27).

In the first simulation, the corners of k-space were
acquired. Therefore, the matrix size of 134 (phase en-
coding) 3 54 (slice encoding) was determined by the
product of the number of encodings, and the TR. This
resulted in a nearly isotropic pixel size of 1.119 mm 3
1.111 mm before zero-filling.

In the second simulation, the corners of k-space were
not acquired, but the total scan time was held fixed.
Thus the final matrix size of 152 3 60 is approximately
=(4/p) larger in the phase- and slice-encoded direc-
tions, for a reduced pixel size of 0.9868 mm 3 1.00 mm.
We expect that this reduction in voxel size would result
in a 9% reduction in SNR in an actual imaging experi-
ment, since the imaging time is held fixed.

Note that when the corners of k-space are acquired,
there is an angular dependence of the spatial resolution
along the diagonal directions (Fig. 9b). When the cor-
ners are not acquired (Fig. 9c), the improved spatial
resolution along the diagonal is traded for improved
spatial resolution, which is virtually isotropic.

We have shown that omitting the corners of ky-kz

space while holding the scan time fixed can be a useful
acquisition strategy, if a small reduction in SNR is ac-
ceptable. It is important to note, however, that the dif-
ferences illustrated between Figure 9b and c can be
greatly reduced in practice when the voxel dimension in
the phase and slice directions become more anisotro-
pic. (Calculations that quantify the area in the corners
of k-space for the elliptical centric view order are pre-
sented in the Appendix.)

CONCLUSIONS

It was shown theoretically and experimentally (at least
for some object geometries) that the data in the corners
of k-space contribute to spatial resolution along diago-
nal image orientations when an interpolation method
such as zero-filling is used. In the absence of radial data
apodization, the expected angular dependence of spa-

tial resolution results, even with Cartesian acquisitions
that are isotropic (i.e., equal phase- and frequency-
encoded dimensions). When the data were recon-
structed with neither windowing nor zero-filling, strong
angular dependence of the spatial resolution was not
observed. This result suggests that spatial resolution is
determined not only by the maximal extent in k-space,
but also can be limited by effects introduced during the
reconstruction process. Thus zero-filling is most help-
ful improving for resolution along the diagonal direction
when the corners of k-space are acquired and retained.

Simulations of three-dimensional data acquisitions
with the elliptical centric view ordering and modulation
by an empirically-fitted gadolinium uptake curve dem-
onstrate that it can be a useful strategy to not acquire
the corners of ky-kz space. Instead, the acquisition time
saved can be used to improve spatial resolution in an
isotropic fashion. It was shown, however, that the rel-
ative advantage of this strategy diminishes as the slice-
and phase-encoded voxel sizes become more unequal.

APPENDIX

Consider the filling of the ky-kz space of a 3D scan
acquired with elliptical centric view ordering (25–27).
Recall with this view ordering, the distance d from the
origin of the ky-kz space (0,0) to each view (ky, kz) is
calculated. The views are then sorted by d, and ac-
quired in the order of ascending distance. Thus, this
view order can be visualized as acquiring k-space views
in concentric circular rings which have increasing di-
ameters. As illustrated by Figure 10, an interesting
situation with respect to the corners of k-space arises
when the aspect ratio A of the ky-kz space is not equal to
unity. This occurs whenever the voxel dimension Dy is
unequal to the slice thickness Dz. Let the aspect ratio be
A, and suppose, without loss of generality, the voxel
dimension in the phase-encoded direction is the
smaller:

Figure 9. a: Numerically generated bull’s-eye pattern. b: Simulated image with acquisition of the corners of ky-kz space. Note the
angular dependence of the spatial resolution. The simulation assumes elliptical centric view ordering, and contrast bolus time
dependence. c: Simulation image with the acquisition time held constant compared to b, but data in the corners of k-space are
not acquired. Instead, that acquisition time is used to increase the spatial resolution. The reconstructions in both b and c are
both zero-filled by a factor of 4.
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According to Figure 10, ky-kz space is filled in a straight-
forward radial manner until d reaches kz,max. When

kz,max # d # ky,max (A.2)

the views lying in the shaded region of Figure 10 are not
acquired. Once the value d 5 ky,max is reached, there are
residual corner views that lie outside the larger circle in
Figure 10, but still lie within the rectangle. The ratio r of
the area of these corner views to the area of the entire
rectangular ky-kz space can be readily calculated:

r~A! 5
1
A E

0

A

~1 2 Î1 2 x2!dx 5 1 2
Î1 2 A2

2
2

arcsin A
2A

(A.3)

The corner-occupation ratio as a function of aspect
ratio, r(A) is plotted in Figure 11. Note that when A 5 1
(square k-space) r is 1 – p/4 5 21.5%, as expected. But
as the voxel becomes more anisotropic (i.e., as A ap-
proaches 0), the fraction r of the area occupied in the
corners drops precipitously. This drop occurs because
a circle of radius ky,max (rather than ellipse) is inscribed
in the rectangle. For an inscribed ellipse, which is the
appropriate model for windowing k-space where A Þ 1,
the area in the corners is always 1 – p/4, regardless of
the aspect ratio A, as derived in the Introduction.

The time to acquire the views in the corners of the
ky-kz space can instead be used to increase the spatial
resolution, at the cost of SNR. Although the differences

in Figure 9b and c are quite apparent, it should be
noted that the maximal effect occurs only when the
k-space is square (A 5 1) since that is when the area
ratio r is largest. For a typical value of A 5 0.7, the r is
only 0.09, so the difference in the acquisition strategies
of Figure 9b and c is reduced by approximately a factor
of 2.4.
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