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Abstract
TSENSE and TGRAPPA are auto-calibrated parallel imaging techniques that can improve the
temporal resolution and/or spatial resolution needed in dynamic magnetic resonance imaging
applications. In its original form, TSENSE uses temporal low-pass filtering of the under-sampled
frames to create the sensitivity map. TGRAPPA uses a sliding-window moving average when
finding the auto-calibrating signals. Both filtering methods are suboptimal in the least-squares
sense, and may give rise to mismatches between the under-sampled k-space raw data and the
corresponding coil sensitivities. Such mismatches may result in aliasing artifacts when imaging
patients with heavy breathing, as in real time imaging of wall motion by MRI following a
treadmill exercise stress test. In this study, we demonstrate the use of an optimal linear filter, i.e.,
the Karhunen-Loeve transform filter, to estimate the channel sensitivity for TSENSE, and acquire
the auto-calibration signals for TGRAPPA. Phantom experiments show that the new
reconstruction method has comparable SNR performance to traditional TSENSE / TGRAPPA
reconstruction. In vivo real-time cardiac cine experiments performed in five healthy volunteers
post-exercise during rapid respiration show that the new method significantly reduces the chest
wall aliasing artifacts caused by respiratory motion (p<0.001).
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1. Introduction
Real-time cine imaging of the heart eliminates the needs for breath-hold and regular cardiac
rhythm, making it a robust and attractive method for many clinical applications. Real-time
cine is limited in temporal and spatial resolution and may be inadequate for cardiovascular
stress imaging and the evaluation of myocardial wall motion at high heart rates. Parallel
imaging techniques such as SENSE (1) and GRAPPA (2) increase imaging efficiency by
reducing the number of phase encoding steps, and have been used to significantly improve
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spatial resolution and temporal resolution in real-time cine (3-5). Both SENSE and
GRAPPA require separate, full field-of-view (FOV) reference data to estimate the channel
sensitivity of SENSE, or the autocalibration signals (ACS) of GRAPPA. TSENSE (6) and
TGRAPPA (7) are autocalibrated parallel imaging techniques that interleave and temporally
filter the k-lines of under-sampled adjacent frames to dynamically estimate coil sensitivity
reference information. This autocalibration method has a few advantages. First, it increases
scan efficiency by eliminating the need to acquire separate coil sensitivity data. Second, the
method adapts the coil sensitivity estimate to temporal changes caused by motion. Third,
TSENSE utilizes a temporal low-pass filter (LP), and TGRAPPA a sliding-window moving
average (MA) of the under-sampled frames when deriving the coil reference data from the
under-sampled data. Temporal filtering or averaging improves the signal-to-noise ratio
(SNR) of the coil reference data, which in turn leads to improved SNR in the final
reconstructed images.

The improved temporal resolution of cine MRI made possible by TSENSE or TGRAPPA is
crucial in real time imaging of cardiac wall motion at the high heart rates encountered with
dobutamine stress or immediately following peak exercise. While pharmacological stress
(e.g. dobutamine or adenosine) is commonly combined with MRI, treadmill or bicycle
exercise is actually the preferred method of cardiovascular stress testing as it reproduces
symptoms and provides important physiological information. MRI immediately following
exercise (8), however, poses a particularly difficult scenario for MRI in which the heart rate
is extremely high and chest wall motion is exaggerated by rapid heavy breathing. Under
these difficult conditions, the filter used to derive the coil reference data from the under-
sampled data in TSENSE or TGRAPPA becomes critical. These filters used in the two
parallel imaging techniques assume that coil sensitivity changes slowly with time (6), and
hence the SNR of the coil reference data can be improved by removing high temporal
frequency components without degrading the correspondence between the coil sensitivity
map and the image data. While this is true when imaging patients during quiet breathing, it
is no longer the case following exercise stress when the receiver coils move rapidly with the
chest wall. As a result, these filters may excessively smooth out rapid temporal changes in
the sensitivity map, giving rise to significant mismatches between the under-sampled k-
space raw data and the corresponding coil sensitivity. Aliasing artifacts may arise,
compromising the diagnostic image quality of the real time cine of the ventricular wall
motion. We sought to improve the performance of TSENSE and TGRAPPA under
conditions of rapid heart rate and deep rapid breathing encountered immediately following
treadmill exercise by applying an improved method of filtering the dynamic coil sensitivity
data.

In this study, we replace the previously described LP and MA temporal filtering approaches
with the optimal linear filter, i.e., the Karhunen-Loeve (KL) transform filter (8), to estimate
the channel sensitivity for TSENSE, and the ACS for TGRAPPA. The KL filter removes the
eigenmodes of the temporal covariance matrix associated with low variance (i.e., small
eigenvalues); the result is a low-rank approximation of the original data matrix that is
optimal in the least square or Frobenius norm sense (9-12). Our hypothesis is that the
temporal KL filter will minimize the mismatch between the coil sensitivity estimate and the
k-space data, and thereby reduce aliasing artifacts. We present experimental results
demonstrating the KL filter method of generating adaptive coil sensitivity data for TSENSE
(KL-TSENSE) and adaptive ACS for TGRAPPA (KL-TGRAPPA) in real-time cardiac cine
images acquired immediately following treadmill exercise. A new metric to automatically
quantify chest wall aliasing artifact is described and used to compare the results from the
different reconstruction methods.
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2. Methods
Reconstruction Algorithm

Both TSENSE and TGRAPPA use the same basic approach to generate dynamically
adaptive coil sensitivity reference data by temporally filtering time-interleaved under-
sampled k-space data. As originally described, TSENSE (6) utilizes a Fourier low-pass
filter, and TGRAPPA (2) a sliding window moving average, although the type of temporal
filtering is not necessarily specific to either reconstruction method. Both filters smooth fast
fluctuations and preserve slow-varying trends in the coil sensitivity profiles, but neither is
optimal in the least-square sense; that is, for a given level of noise reduction, neither filter
minimizes the effect on information content. We replaced the LP and MA filters in the
TSENSE and TGRAPPA reconstruction methods by a KL filter. The KL filter is similar to
other transform-based filters (such as Fourier or Wavelet filters) and follows the same three
essential steps: first, apply the KL transform to the original image series in the temporal
direction to generate the eigenmode series; second, truncate the eigenmode series (set the
eigenmodes associated with small eigenvalues equal to zero); third, apply the inverse KL
transform to the truncated eigenmodes to reconstruct the series of filtered images (13).

Replacing the LP filter in TSENSE and the MA filter in TGRAPPA by the KL filter results
in the algorithm (hereby referred to as KL-TSENSE/KL-TGRAPPA) illustrated in Fig. 1.
The algorithm can be described by the following steps. First, acquire p frames of under-
sampled k-space data with parallel imaging reduction factor R (p >> R) using the time-
interleaved acquisition scheme. Second, combine adjacent frames to generate p-R+1 full k-
space raw data sets using a sliding window (width = R frames). Third, apply the KL filter to
the p-R+1 full k-space raw data sets along the temporal direction (8), filtering out the
eigenmodes with low eigenvalues. Fourth, use the KL filtered full k-space data sets to form
dynamic estimates of the channel sensitivity for TSENSE reconstruction, or the ACS for
TGRAPPA reconstruction. Finally, perform standard SENSE or GRAPPA reconstruction
using a unique coil sensitivity estimate or ACS to reconstruct each frame. In the GRAPPA
reconstruction used in this study, the block size was set to 4, and the number of ACS lines
was set to be 90% of the phase encoding lines in the central k-space of the reference image.

Thus, the new algorithm differs from TSENSE and TGRAPPA in the use of a temporal KL
filter to generate dynamic coil sensitivity maps or ACS lines. Also, the original description
of TSENSE did not incorporate a sliding window in the second step; the combination of
adjacent interleaved k-lines prior to filtering is necessary for KL filtering in the image
domain, and does not substantially affect the results of LP or MA filtering. In order to
demonstrate the effect of temporal filters on image quality in this study, no additional spatial
smoothing of the coil sensitivity maps or any additional temporal filtering of the
reconstructed image series was applied.

Filter Cutoff
To compare the various reconstruction algorithms, filter cutoff values for the LP and MA
filters were chosen based on the original descriptions of the filters applied to TSENSE and
TGRAPPA, and also to match their performance in temporal smoothing and noise reduction.
In the original TSENSE description, a Fourier low pass filter with a cutoff of 0.75 Hz was
used, although the paper also mentioned that filter cutoffs up to 2.5 Hz gave similar results
(6). To compare the performance of the three filters, we chose to retain three Fourier modes
in the LP filter, corresponding to a cutoff of 1.35 Hz. In the original TGRAPPA description,
a sliding window moving average of three consecutive fully-sampled k-space frames was
used, corresponding to a temporal frequency cutoff of approximately 1.51 Hz (the full width
at half maximum of the corresponding sinc function). For the MA filter, we applied a sliding
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window of three fully-sampled k-space frames, matching the original description of
TGRAPPA; this resulted in a temporal frequency cutoff of approximately 1.06 Hz at the
sampling rates used in this study.

The KL filter has no well-defined pass-band frequency. Selection of eigenmodes was
considered as follows. Since both the KL filter and the LP filter are unitary transform based
filters, the SNR gain is identical when the same number of eigenmodes as Fourier modes are
retained (8). Therefore, we chose to retain three eigenmodes in the KL filter, matching the
noise reduction performance of the LP filter. The optimality of the KL filter ensures that it
has minimal distortion on the original data for a given level of noise reduction. In the
comparison, all the three filters, (LP, MA, and KL) were used to estimate channel sensitivity
and ACS from time-interleaved under-sampled k-space data, which were then used by the
SENSE and GRAPPA reconstruction methods.

Imaging Experiments
All imaging experiments were done on a 1.5T MRI system (MAGNETOM Avanto, Siemens
Healthcare, Erlangen, Germany) equipped with 32 independent receiver channels. A
standard 12-channel combined body and spine array coil was used for phantom imaging, and
a 32-channel receiver array (Rapid MR International, Columbus, OH) was used for all
volunteer imaging. The volunteer study was approved by our Institutional Review Board and
all subjects gave written informed consent to participate. Image reconstruction was
performed off-line in Matlab® 7.8 (MathWorks, Natick, Massachusetts) running on a
personal computer with Intel® Core 2 Quad 3.00 GHz CPU and 8.0 GB RAM. When
applying the KL filter to a 50-frame complex image series with 160 × 120 matrix, the
processing time was less than 0.07 s.; i.e., the computational load of the KL filter is
negligible.

2.1. Phantom Study—Images of a static phantom were acquired to compare the spatial
mean SNR performance of the different filtering methods. Multiple-frame gradient echo
images of a water bottle phantom from the scanner manufacturer (1.25g NiSO·4⋅6H2O +
5gNaCl per 1000g H2O, T1 = 578 ms, T2 = 263 ms) were acquired with the following
imaging parameters: 128 × 128 matrix, 10mm thick slice, flip angle=15°, TE/TR = 4.23/7.76
ms, pixel bandwidth=250 Hz/pixel, FOV = 100 × 100 mm2, number of frames = 128. The
fully sampled k-space raw data from multiple channels was collected, reconstructed, and
combined using sum-of-squares. The raw data was then down-sampled by a factor of three
and four (R = 3, 4). The resulting raw data was then reconstructed using TSENSE and
TGRAPPA. The sensitivity data were obtained by each of the filtering schemes (LP, MA,
and KL),

There is no well-accepted image SNR definition for MR images reconstructed using parallel
imaging methods. In the phantom study, we used the spatial mean SNR as the SNR metric to
evaluate the performance of different reconstruction algorithms. Spatial mean SNR was
defined as the spatial average of the pixel-wise SNR measured by the multiple-acquisition
method which was shown to be accurate in gradient echo images (14,15). The spatial mean
SNR of the reconstructed images was assessed in a circular region of interest (ROI) with
diameter =87 mm containing the entire phantom. Both signal and noise levels were
evaluated in the same large ROI to minimize sensitivity of the SNR estimate to the spatial
variation of noise (i.e., the g-factor effect).

2.2. Volunteer Study—Images acquired immediately after peak exercise stress and
reconstructed using parallel imaging methods can be contaminated by severe chest wall
aliasing artifacts due to the mismatch between coil sensitivity data and k-space data caused
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by heavy breathing. The volunteer study was performed to evaluate the performance of the
proposed filter in reducing respiratory artifact in this scenario. We imaged 5 healthy
volunteers immediately following maximal treadmill exercise performed inside the MRI
room (16). Real-time cine images were acquired using a balanced steady-state free
precession (SSFP) sequence at two acceleration rates (R = 3 and R = 4) in 6 views (vertical
long-axis, horizontal long-axis, and four short-axis views) resulting in a total of 60 series of
cine raw data (5 volunteers, 2 acceleration rates, 6 slices). Imaging parameters were: 160 ×
84 matrix, 10mm thick slice, flip angle=68°, TE/TR = 0.99/2.26 ms, pixel bandwidth=1360
Hz/pixel, FOV = 380 × 300 mm2. The views were scanned sequentially, and each slice was
scanned for 2.2 seconds, resulting in 35 frames at a temporal resolution of 63.3 ms for R=3,
and 46 frames at a temporal resolution of 47.5 ms for R=4. Each dataset was reconstructed
with both TSENSE and TGRAPPA using each of the three different filter methods (LP, MA,
and KL) to generate coil sensitivity data or ACS lines. The average heart rate was measured
by counting the frames per cardiac cycle in the reconstructed images. The average maximum
chest wall excursion was measured in a sagittal view cine. The severity of respiratory
artifact of the resulting images was evaluated using the automated method described below.

Quantifying aliasing artifact
In the real time cines, the subcutaneous fat of the chest wall was extremely bright due to its
proximity to the surface coil (see Fig. 2). The chest wall also moved significantly with
breathing, causing the coil position to shift. The strong signal from subcutaneous fat together
with motion led to aliasing of the chest wall fat when there was a mismatch between the
sensitivity map and k-space data.

Based on the above observation, a method was devised to quantitatively assess the aliasing
artifact caused by chest wall motion in real time cine. For each phase in each cine series (of
N images), an artifact index was calculated in the following way. For each image in a series,
a template was defined by retaining the intensity of the 1% of pixels with the highest
intensity and assigning a value of ‘0’ to all other pixels. This template outlined the
subcutaneous fat that would contribute most to the aliasing artifact. We found that signal
thresholds from 0.2% to 5% did not significantly impact the artifact index. The one-
dimensional cross-correlation coefficient between each image and its template (consisting
primarily of the chest wall) was calculated in the phase-encoded direction. Because of the
chest wall ‘ghosts’ or other bright structures throughout the images, the cross-correlation
coefficients will have local maxima at positions corresponding to fractions of the FOV in the
phase encoding direction that match the reduction rate, R. For example, if R = 3, aliasing
artifacts will be primarily located FOV/3 and 2×FOV/3 shifted away from the actual
structure. The artifact index was defined as the maximum of the cross-correlation
coefficients. Artifact indices associated with each image reconstructed using each of the
different methods were calculated.

For each reconstruction method, and each acceleration rate, a paired t-test was used to
compare the artifact indices of all images from all five volunteers between different filters.
A paired t-test was also used to compare the artifact indices of all images from each of the
individual volunteers.

3. Results
The mean SNR of the phantom images reconstructed from fully-sampled k-space raw data
without parallel imaging was 76.3, and those of the phantom images reconstructed using
each of the filter methods combined with both TSENSE and TGRAPPA, R=3 and R=4, are
listed in Table 1. Images calculated using the MA filter had the highest SNR among the
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three adaptive reference map methods, and images calculated using the LP filter and KL
filter had similar SNR (difference < 4%).

The volunteer cardiac cine images were acquired during high heart rate (153 ± 18 bpm) and
heavy breathing (chest wall excursion: 13.2 ± 5.0 mm). The results of volunteer study are
summarized in Fig. 3, Fig. 4, and Fig. 5. Figure 3 shows a bar chart of the average artifact
index calculated for all combinations of filters, reconstruction methods, and acceleration
rates based on all images from all five volunteers. Artifacts were more severe at R=4 than at
R=3 independent of the filter used. The mean artifact indices across all images reconstructed
using the KL filtered reference data were significantly lower (p-value<0.001) than both the
MA and the LP filter methods for all combinations of reconstruction methods, cardiac
views, and acceleration rates. The artifact reduction provided by the KL method was more
pronounced at R=3, and the MA filter results showed significantly lower artifact indices (p-
value<0.001) than the LP filter. When the artifact indices were averaged across all images
for each individual volunteer and compared using a paired t-test, the KL filter had artifact
indices significantly lower (p-value<0.05) than those obtained using the other filter methods
for all images except in one case. In this single volunteer case where cine images were
acquired with R=4, the TGRAPPA reconstruction yielded an artifact index not significantly
different from that of KL-TGRAPPA.

Figure 4a-c and Fig. 4d-f show results from a single raw data set acquired from one
volunteer reconstructed using three filter methods combined with TSENSE and TGRAPPA
at accelerate rate R = 3, respectively. Figure 5a-c and Fig. 5d-f show results from a raw data
set acquired from the same volunteer reconstructed using three filter methods combined with
TSENSE and TGRAPPA at accelerate rate R = 4, respectively. The images were all
windowed to the same level. In both cases, the severity of the aliasing artifact was reduced
significantly in KL-TSENSE and KL-TGRAPPA compared to other methods. Please note
that in the example shown, the R = 3 images were acquired immediately post-exercise at a
heart rate of 144 bpm, while the rate 4 images were acquired approximately 20 seconds later
when the heart rate had dropped to 114 bpm. This may explain why quality of the R=4
images in Fig. 5 appears higher than the R=3 images in Fig. 4. Overall, however, the average
artifact index was higher for R=4 images (Fig. 3) and the SNR was higher for R=3 (Table
1).

4. Discussion
A method of temporal filtering based on the Karhunen-Loeve transform was developed and
used to adaptively estimate coil sensitivity for dynamic cardiac cine imaging. This KL filter
replaced the low-pass and moving average filters previously described for the TSENSE and
TGRAPPA reconstruction methods. We have shown that the optimality of the KL filter
reduced the level of ghost artifacts in TSENSE and TGRAPPA real-time cardiac cine
images acquired during rapid and heavy breathing immediately following treadmill exercise.

Fourier transform based temporal LP filtering (MA filter being a special case) removes noise
and smoothes rapid fluctuations while preserving slow-varying trends. When sharp edges
appear in the time course of pixel intensity caused, for example, by chest-wall motion, LP
filtering will inevitably cause blurring and/or ringing in the filtered data. These artifacts will
cause mismatches between the channel sensitivity map/ACS estimated from LP filtered
images and the corresponding under-sampled k-space raw data, and such mismatches lead to
aliasing artifacts in the reconstructed images. It has been shown that the KL filter, known to
be the optimal linear filter in a least-squares sense, can minimize edge blurring and ringing
artifacts compared to LP-filters (8). Minimization of these artifacts in the sensitivity map is
thought to be the cause of the reduced aliasing artifacts demonstrated in this study.
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It can be proven mathematically that if the respiratory motion and cardiac motion are strictly
periodic, and the image series contains an integer number of cardiac and respiration cycles,
or the acquisition time is long enough (>> respiration cycle), the temporal KL Transform
and the Fourier Transform are equivalent, and the temporal low-pass filter and the KL filter
can be identical (11). However, the above conditions can hardly be satisfied in practice. As
such, the KL filter is the optimal linear filter in the least-squares sense. In the specific
application of interest, post-exercise real-time cine imaging, the exaggerated motion due to
deep, rapid, breathing strongly favors the KL filter in the TSENSE/TGRAPPA
reconstruction.

Phantom images showed that the performance of the KL filter was comparable to the LP
filter method for both TSENSE and TGRAPPA in terms of the SNR in the final
reconstructed images (Table 1). This was expected since three eigenmodes and three Fourier
modes were used in the filters, respectively. The MA filter resulted in the highest SNR of
the adaptive filters, but this was also expected due to the approximately 22% lower effective
frequency cutoff of the MA filter compared with the LP filter, based on the parameters
chosen. The primary aim in replacing the previously used LP and MA filter with the KL
filter was to reduce image artifacts, which we have shown to be successful. From our
experience, the slightly reduced SNR did not cause any visible image quality degradation,
while reducing respiratory artifact noticeably improved the quality of the real time cines.

Real-time cardiac cine results showed that the new KL-TSENSE and KL-TGRAPPA
methods significantly reduced chest-wall aliasing artifacts compared to the other filtering
approaches. This advantage is best appreciated in clinical applications where significant
breathing motion can disrupt the correspondence between coil sensitivity map and the k-
space data. The MA filter is a special type of temporal low-pass filter and it generated lower
aliasing artifacts than the LP filter methods. We believe that the MA filter preserved sharp
boundaries better than the LP filter used in our experiment, due possibly to the smoother
transition bands in the frequency response of the MA filter.

The sensitivity maps used in TSENSE and TGRAPPA are essentially single-shot images
acquired using an interleaved k-line ordering scheme. The combination of interleaved k-
space acquisition and chest wall motion results in so-called “segmentation ghosts”, apart
from the artifacts caused by temporal filtering. This is another potential source of error in
the channel sensitivity map/ACS estimation, and its severity varies with the inter-leaved k-
space sampling pattern. Unlike the artifacts caused by temporal filtering, the “segmentation
artifacts” and the corresponding error in channel sensitivity/ACS estimation cannot be
significantly reduced by the KL filter, or any linear filter for that matter. This helps explain
why the degree of aliasing artifacts in the reconstructed images at R = 4 is higher than at R =
3. This effect may be reduced by optimizing the k-space sampling trajectory or applying
motion correction strategies.

Another limitation of the KL filter is that it can only be applied after all data has been
acquired; this precludes its use in applications where real-time reconstruction and display of
the images is required. This limitation can be lifted to some degree by applying the KL filter
to a narrower temporal sliding window, similar to the low-latency LP filter techniques
proposed elsewhere (17,18).

In this study, we also introduced a new metric for quantifying aliasing artifacts using a
template-based cross-correlation approach. The method may be useful in the investigation of
other methods where the level of ghost artifact is of concern.
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5. Conclusion
The Karhunen-Loeve Transform filter is an alternative to conventional low-pass and moving
average filters. It provides a more accurate adaptive estimate of temporally changing coil
sensitivity than the filters proposed in the original descriptions of TSENSE and TGRAPPA.
This approach was shown to reduce ghosting artifacts in TSENSE and TGRAPPA
reconstructed real-time cardiac cine images acquired during rapid and heavy breathing
immediately following treadmill exercise. The method may be relevant to other applications
where coil sensitivity is dynamically changing.
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Figure 1.
Block diagrams for KL-TSENSE and KL-TGRAPPA reconstruction algorithms. The
temporal KL filter replaces the LP and the MA filters in the conventional TSENSE and
TGRAPPA reconstruction algorithms.
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Figure 2.
Schematic showing the method used to calculate the artifact index. (a) The original image;
(b) the template that contains the 1% of pixels with the highest intensity; (c) the cross-
correlation function between the original image and the template. The peaks at FOV/3 and
2×FOV/3 are compared for acceleration rate R = 3. The highest peak in the cross correlation
function is selected as the artifact index for this image.
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Figure 3.
The mean artifact indices and the corresponding standard deviation for all five volunteers.
The mean artifact score of KL-TSENSE/TGRAPPA reconstructed images is significantly
lower (paired t-test, p<0.001) than those of LP-TSENSE/TGRAPPA and MA-TSENSE/
TGRAPPA reconstructed images at both acceleration rates R = 3 and R = 4.
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Figure 4.
Example images acquired using acceleration rate R = 3 and reconstructed using TSENSE (a-
c), TGRAPPA (d-f), and all three filter methods. All images shown are from the same raw
data. LP, MA, and KL filters were used to generate channel sensitivity maps for the
TSENSE reconstructions shown in panels a, b, and c, respectively. LP, MA, and KL filters
were used to generate the autocalibration sensitivities for the TGRAPPA reconstructions
shown in panels d, e, and f, respectively. Aliasing artifacts were reduced significantly in KL-
TSENSE (c) and KL-TGRAPPA (f) reconstructed images compared to all other methods of
sensitivity map filtering.
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Figure 5.
Example images acquired using acceleration rate R = 4 and reconstructed using TSENSE (a-
c), TGRAPPA (d-f), and all three filter methods. All images shown are from the same raw
data. LP, MA, and KL filters were used to generate channel sensitivity maps for the
TSENSE reconstructions shown in panels a, b, and c, respectively. LP, MA, and KL filters
were used to generate the autocalibration sensitivities for the TGRAPPA reconstructions
shown in panels d, e, and f, respectively. Aliasing artifacts were reduced significantly in KL-
TSENSE (c) and KL-TGRAPPA (f) reconstructed images compared to all other methods of
sensitivity map filtering.
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