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Abstract

This paper tries to give a gentle introduction to deep learning in medical image processing, proceeding from theoretical
foundations to applications. We first discuss general reasons for the popularity of deep learning, including several major
breakthroughs in computer science. Next, we start reviewing the fundamental basics of the perceptron and neural networks,
along with some fundamental theory that is often omitted. Doing so allows us to understand the reasons for the rise of deep
learning in many application domains. Obviously medical image processing is one of these areas which has been largely
affected by this rapid progress, in particular in image detection and recognition, image segmentation, image registration,
and computer-aided diagnosis. There are also recent trends in physical simulation, modeling, and reconstruction that have
led to astonishing results. Yet, some of these approaches neglect prior knowledge and hence bear the risk of producing
implausible results. These apparent weaknesses highlight current limitations of deep ()learning. However, we also briefly
discuss promising approaches that might be able to resolve these problems in the future.
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1 Introduction

Over the recent years, Deep Learning (DL) [1] has had a
tremendous impact on various fields in science. It has lead to
significant improvements in speech recognition [2] and image
recognition [3], it is able to train artificial agents that beat
human players in Go [4] and ATARI games [5], and it creates
artistic new images [6,7] and music [8]. Many of these tasks
were considered to be impossible to be solved by computers
before the advent of deep learning, even in science fiction
literature.

Obviously this technology is also highly relevant for medi-
cal imaging. Various introductions to the topic can be found in
the literature ranging from short tutorials and reviews [9-18]
over blog posts and jupyter notebooks [19-21] to entire books

[22-25]. All of them serve a different purpose and offer a dif-
ferent view on this quickly evolving topic. A very good review
paper is for example found in the work of Litjens et al. [ 12], as
they did the incredible effort to review more than 300 papers
in their article. Since then, however, many more noteworthy
works have appeared —almost on a daily basis — which makes it
difficult to create a review paper that matches the current pace
in the field. The newest effort to summarize the entire field was
attempted in [26] listing more than 350 papers. Again, since
its publication several more noteworthy works appeared and
others were missed. Hence, it is important to select methods of
significance and describe them in high detail. Zhou et al. [22]
do so for the state-of-the-art of deep learning in medical image
analysis and found an excellent selection of topics. Still, deep
learning is being quickly adopted in other fields of medical
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image processing and the book misses, for example, topics
such as image reconstruction. While an overview on impor-
tant methods in the field is crucial, the actual implementation
is as important to move the field ahead. Hence, works like the
short tutorial by Breininger et al. [20] are highly relevant to
introduce to the topic also on a code-level. Their jupyter note-
book framework creates an interactive experience in the web
browser to implement fundamental deep learning basics in
Python. In summary, we observe that the topic is too complex
and evolves too quickly to be summarized in a single docu-
ment. Yet, over the past few months there already have been
so many exciting developments in the field of medical image
processing that we believe it is worthwhile to point them out
and to connect them to a single introduction.

Readers of this article do not have to be closely acquainted
with deep learning at its terminology. We will summarize the
relevant theory and present it at alevel of detail that is sufficient
to follow the major concepts in deep learning. Furthermore,
we connect these observations with traditional concepts in
pattern recognition and machine learning. In addition, we put
these foundations into the context of emerging approaches in
medical image processing and analysis, including applications
in physical simulation and image reconstruction. As a last
aim of this introduction, we also clearly indicate potential
weaknesses of the current technology and outline potential
remedies.

2 Materials and methods

2.1 Introduction to machine learning and pattern
recognition

Machine learning and pattern recognition essentially deal
with the problem of automatically finding a decision, for
example, separating apples from pears. In traditional literature
[27], this process is outlined using the pattern recognition sys-
tem (cf. Fig. 1). During a training phase, the so-called training
data setis preprocessed and meaningful features are extracted.
While the preprocessing is understood to remain in the origi-
nal space of the data and comprised operations such as noise
reduction and image rectification, feature extraction is facing
the task to determine an algorithm that would be able to extract
a distinctive and complete feature representation, for exam-
ple, color or length of the semi-axes of a surrounding ellipse
for our apples and pears example. This task is truly difficult
to generalize, and it is necessary to design such features anew
essentially for every new application. In the deep learning lit-
erature, this process is often also referred to as “hand-crafting”
features. Based on the feature vector x € R”", the classifier
has to predict the correct class y, which is typically estimated
by afunction § = f(x) that directly results in the classification
result y. The classifier’s parameter vector 6 is determined dur-
ing the training phase and later evaluated on an independent
test data set.

2.2 Neural networks

In this context, we can now follow neural networks and
associated methods in their role as classifiers. The funda-
mental unit of a neural network is a neuron, it takes a bias
wo and a weight vector w = (wy, ..., w,) as parameters
0 = (wo, ..., w,) to model a decision

F(x) = h(w"x + wp) (1)

using a non-linear activation function A(x). Hence, a single
neuron itself can already be interpreted as a classifier, if
the activation function is chosen such that it is monotonic,
bounded, and continuous. In this case, the maximum and
the minimum can be interpreted as a decision for the one
or the other class. Typical representatives for such activation
functions in classical literature are the sign function sign(x)
resulting in Rosenblatt’s perceptron [28], the sigmoid function
or the tangens hyperbolicus tanh(x) = z;z:
(cf. Fig. 5). A major disadvantage of individual neurons is that
they only allow to model linear decision boundaries, resulting
in the well known fact that they are not able to solve the XOR
problem. Fig. 2 summarizes the considerations towards the
computational neuron graphically.

In combination with other neurons, modeling capabilities
increase dramatically. Arranged in a single layer, it can already
be shown that neural networks can approximate any continu-
ous function fix) on acompact subset of R” [29]. A single layer
network is conveniently summarized as a linear combination
of N individual neurons

o(xX) = 1=

e—X?

N-1

F = vih(wx + wo) )

i=0

using combination weights v;. All trainable parameters of this
network can be summarized as

.
0 = (vo, wo,0, WO, - - ., UN, WO,N, WN) .

The difference between the true function f(x) and its approx-
imation f(x) is bounded by

|f(x) — Fx)| <€, A3)

where € decreases with increasing N for activation functions
that satisfy the criteria that we mentioned earlier (mono-
tonicity, boundedness, continuity) [30]. Hence, given a large
number of neurons, any function can be approximated using
a single layer network only. Note that the approximation
will only be valid for samples that are drawn from the same
compact set on which the network was trained. As such,
an additional practical requirement for an approximation is
that the training set is representative and future observations
will be similar. At first glance, this contradicts all recent
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Figure 1. Schematic of the traditional pattern recognition pipeline used for automatic decision making. Sensor data is preprocessed and
“hand-crafted” features are extracted in training and test phase. During training a classifier is trained that is later used in the test phase to

decide the class automatically (after [27]).

Activation
function

inputs  weights

Biological Neuron

Computational Neuron

New sample
e ¥

Orthogonal.-distance

Decisiom\boundary

Linear Decision Boundary XOR Problem

Figure 2. Neurons are inspired by biological neurons shown on the left. The resulting computational neuron computes a weighted sum of its
inputs which is then processed by an activation function /(x) to determine the output value (cf. Fig. 5). Doing so, we are able to model linear
decision boundaries, as the weighted sum can be interpreted as a signed distance to the decision boundary, while the activation determines
the actual class membership. On the right-hand side, the XOR problem is shown that cannot be solved by a single linear classifier. It typically

requires either curved boundaries or multiple lines.

developments in deep learning and therefore requires addi-
tional attention.

In the literature, many arguments are found why a deep
structure has benefits for feature representation, including the
argument that by recombination of the weights along the dif-
ferent paths through the network, features may be re-used
exponentially [31]. Instead of summarizing this long line of
arguments, we look into a slightly simpler example that is
summarized graphically in Fig. 3. Decision trees are also able
to describe general decision boundaries in R”. A simple exam-
ple is shown on the top left of the figure, and the associated
partition of a two-dimensional space is shown below, where
black indicates class y=1 and white y=0. According to the
universal approximation theorem, we should be able to map
this function into a single layer network. In the center col-
umn, we attempt to do so using the inner nodes of the tree and
their inverses to construct a six neuron basis. In the bottom of
the column, we show the basis functions that are constructed
at every node projected into the input space, and the resulting
network’s approximation, also shown in the input space. Here,
we chose the output weights to minimize ||y — y||2. As can
be seen in the result, not all areas can be recovered correctly.
In fact, the maximal error € is close to 0.7 for a function that

is bounded by 0 and 1. In order to improve this approxima-
tion, we can choose to introduce a second layer. As shown in
the right column, we can choose the strategy to map all inner
nodes to a first layer and all leaf nodes of the tree to a sec-
ond layer. Doing so effectively encodes every partition that
is described by the respective leaf node in the second layer.
This approach is able to map our tree correctly with e =0. In
fact, this approach is general, holds for all decision trees, and
was already described by Ivanova et al. in 1995 [32]. As such,
we can now understand why deeper networks may have more
modeling capacity.

2.3 Network training

Having gained basic insights into neural networks and their
basic topology, we still need to discuss how its parameters 6
are actually determined. The answer is fairly easy: gradient
descent. In order to compute a gradient, we need to define
a function that measures the quality of our parameter set 6,
the so-called loss function L(6). In the following, we will
work with simple examples for loss functions to introduce
the concept of back-propagation, which is the algorithm that
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Figure 3. A decision tree allows to describe any partition of space and can thus model any decision boundary. Mapping the tree into a
one-layer network is possible. Yet, there still is significant residual error in the resulting function. In the center example, € &~ 0.7. In order
to reduce this error further, a higher number of neurons would be required. If we construct a network with one node for every inner node in
the first layer and one node for every leaf node in the second layer, we are able to construct a network that results in € =0.

is commonly used to efficiently compute gradients for neural

network training.
We can represent a single-layer fully connected network

with linear activations simply as y = }‘(x) = Wx, ie., a
matrix multiplication. Note that the network’s output is now
multidimensional with y, y € R™. Using an L.2-loss, we end

up with the following objective function:

] ~ 1
L(0>=5||f<x>—y||%=5||Wx—y||%. 4)

In order to update the parameters = W in this example, we
need to compute

oL RYAY,
AL _ L AF (Wx — y)(x") (5)
oW 9 OW

N, ~—

(Wx—y) (1)

using the chain rule. Note that - indicates the operator’s side,
as matrix vector multiplications generally do not commute.
The final weight update is then obtained as

witl — wi + U(ij _ y)xT, (6)

where 1 is the so-called learning rate and j is used to index
the iteration number.

Now, let us consider a slightly more complicated net-
work structure with three layers y = }3(}‘2(}1@))) =
W3 W, W x, again using linear activations. This yields the
following objective function:

1
L) = 5||W3W2W1x—y||%. 7

Note that this example is academic, as @ = { W, W,, W3} could
simply be collapsed to a single matrix. Yet, the concept that
we use to derive this gradient is generally applicable also to
non-linear functions. Computing the gradient with respect to
the parameters of the last layer W3 follows the same recipe as
in the previous network:

L aL afs
Wy oF, W3
~— ~~

(W3Wa W x—y) (WaWix)"

= (W3WoWix — p)(WoWix)'. (8
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For the computation of the gradient with respect to the second
layer W5, we already need to apply the chain rule twice:

oL _BL afy AL 8fs ofy
AWy 9f, W2 af af, W,
f3 f3 f2 \ , (9)

(W3WaWix—y)wy)T .- (Wix)T
= W] (W3W,Wix — y)(Wix)'.

Which leads us to the input layer gradient that is determined
as

L AL df5

oW,

_ L 3f3 8f

0fF; W1 af; 0, W1

OL 35 0f2 Of,

af, of, oW
(W3WoWix—y) w3 . (wy)T . )

= W] W] (W3;W,Wix — y)(x)".

— (10)
af3
~—~

The matrix derivatives above are also visualized graphically
in Fig. 4. Note that many intermediate results can be reused
during the computation of the gradient, which is one of the rea-
sons why back-propagation is efficient in computing updates.
Also note that the forward pass through the net is part of 33;3 ,
which is contained in all gradients of the net. The other par-
tial derivatives are only partial derivatives either with respect
to the input or the parameters of the respective layer. Hence,
back-propagation can be used if both operations are known
for every layer in the net. Having determined the gradients,

each parameter can now be updated analogous to Eq. (6).

2.4 Deep learning

With the knowledge summarized in the previous sections,
networks can be constructed and trained. However, deep
learning is not possible. One important element was the estab-
lishment of additional activation functions that are displayed
in Fig. 5. In contrast to classical bounded activations like
sign(x), o(x), and tanh(x), the new functions such as the Rec-
tified Linear Unit

x if x>0

Rel.U(x) = {O else

and many others, of which we only mention the Leaky ReLU

x if x>0

LReLU(x) = {ax else

were identified to be useful to train deeper networks. Contrary
to the classical activation functions, many of the new activa-
tion functions are convex and have large areas with non-zero
derivatives. As can be seen in Eq. (10), the computation of the
gradient of deeper layers using the chain rule requires several

multiplications of partial derivatives. The deeper the net, the
more multiplications are required. If several elements along
this chain are smaller than 1, the entire gradient decays expo-
nentially with the number of layers. Hence, non-saturating
derivatives are important to solve numerical issues, which
were the reasons why vanishing gradients did not allow train-
ing of networks that were much deeper than about three layers.
Also note that each neuron does not loose its interpretation as
a classifier, if we consider O as the classification boundary.
Furthermore, the universal approximation theorem still holds
for a single-layer network with ReL.Us [33]. Hence, several
useful and desirable properties are attained using such modern
activation functions.

One disadvantage is, of course, that the ReLU is not dif-
ferentiable over the entire domain of x. At x=0 a kink is
found that does not allow to determine a unique gradient.
For optimization, an important property of the gradient of
a function is that it will point towards the direction of the
steepest ascent. Hence, following the negative direction will
allow minimization of the function. For a differentiable func-
tion, this direction is unique. If this constraint is relaxed to
allow multiple directions that lead to an extremum, we arrive
at sub-gradient theory [34]. It allows us to still use gradient
descent algorithms to optimize such problems, if it is possi-
ble to determine a sub-gradient, i.e., at least one instance of a
valid direction towards the optimum. For the ReLU, any value
between 0 and — 1 would be acceptable at x =0 for the descent
operation. If such a direction can be obtained, convergence
is guaranteed for convex problems by application of specific
optimization programs, such as using a fixed step size in the
gradient descent [35]. This allows us to remain with back-
propagation for optimization, while using non-differentiable
activation functions.

Another significant advance towards deep learning is the
use of specialized layers. In particular, the so-called con-
volution and pooling layers enable to model locality and
abstraction (cf. Fig. 6). The major advantage of the convo-
lution layers is that they only consider a local neighborhood
for each neuron, and that all neurons of the same layer share
the same weights, which dramatically reduces the amount of
parameters and therefore memory required to store such a
layer. These restrictions are identical to limiting the matrix
multiplication to a matrix with circulant structure, which
exactly models the operation of convolution. As the opera-
tion is generally of the form of a matrix multiplication, the
gradients introduced in Section 2.3 still apply. Pooling is an
operation that is used to reduce the scale of the input. For
images, typically areas of 2 x 2 or 3 x 3 are analyzed and
summarized to a single value. The average operation can again
be expressed as a matrix with hard-coded weights, and gra-
dient computation follows essentially the previous section.
Non-linear operations, such as maximum or median, however,
require more attention. Again, we can exploit the sub-gradient
approach. During the forward pass through the net, the maxi-
mum or median can easily be determined. Once this is known,
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Figure 4. Graphical overview of back-propagation using layer derivatives. During the forward pass, the network is evaluated once and
compared to the desired output using the loss function. The back-propagation algorithm follows different paths through the layer graph in

order to compute the matrix derivatives efficiently.
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Figure 5. Overview of classical (sign(x), o(x), and tanh(x)) and modern activation functions, like the Rectified Linear Unit ReLU(x) and the

leaky ReLLU LReL.U(x).

amatrix is constructed that simply selects the correct elements
that would also have been selected by the non-linear methods.
The transpose of the same matrix is then employed during
the backward pass to determine an appropriate sub-gradient
[36]. Fig. 6 shows both operations graphically and highlights
an example for a convolutional neural network (CNN). If we
now compare this network with Fig. 1, we see that the original
interpretation as only a classifier is no longer valid. Instead, the
deep network now models all steps directly from the signal up
to the classification stage. Hence, many authors claim that fea-
ture “hand-crafting” is no longer required because everything
is learned by the network in a data-driven manner.

So far, deep learning seems quite easy. However, there

are also
learning
the loss
the loss
problem

important practical issues that all users of deep
need to be aware of. In particular, a look at
over the training iterations is very important. If
increases quickly after the beginning, a typical
is that the learning rate n is set too high. This

is typically referred to as exploding gradient. Setting n

too low,

however, can also result in a stagnation of the

loss over iterations. In this case, we observe again van-
ishing gradients. Hence, correct choice of 1 and other

training
[37].

hyper-parameters is crucial for successful training
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Figure 6. Convolutional layers only face a limited preceptive field and all neurons share the same weights (cf. left side of the figure; adopted
from [40]). Pooling layers reduce the total input size. Both are typically combined in an alternating manner to construct convolutional neural

networks (CNNs). An example is shown on the right.

In addition to the training set, a validation set is used to
determine over-fitting. In contrast to the training set, the val-
idation set is never used to actually update the parameter
weights. Hence, the loss of the validation set allows an esti-
mate for the error on unseen data. During optimization, the
loss on the training set will continuously fall. However, as
the validation set is independent, the loss on the validation
set will increase at some point in training. This is typically a
good point to stop updating the model before it over-fits to the
training data.

Another common mistake is bias in training or test data.
First of all, hyper-parameter tuning has to be done on vali-
dation data before actual test data is employed. In principle,
test data should only be looked at once architecture, param-
eters, and all other factors of influence are set. Only then
the test data is to be used. Otherwise, repeated testing will
lead to optimistic results [37] and the system’s performance
will be over-estimated. This is as forbidden as including the
test data in the training set. Furthermore, confounding factors
may influence the classification results. If, for example, all
pathological data was collected with Scanner A and all con-
trol data was collected with Scanner B, then the network may
simply learn to differentiate the two scanners instead of the
identifying the disease [38].

Due to the nature of gradient descent, training will stop
once a minimum is reached. However, due to the general non-
convexity of the loss function, this minimum is likely to be
only a local minimum. Hence, it is advisable to perform mul-
tiple training runs with different initialization techniques in
order to estimate a mean and a standard deviation for the model
performance. Single training runs may be biased towards a
single more or less random initialization.

Furthermore, it is very common to use typical regular-
ization terms on parameters, as it is commonly done in
other fields of medical imaging. Here, L2- and L1-norms
are common choices. In addition, regularization can also be
enforced by other techniques such as dropout, weight-sharing,
and multi-task learning. An excellent overview is given in
[37].

Also note that the output of a neural network does not equal
to confidence, even if they are scaled between 0 and 1 and

appear like probabilities, e.g. when using the so-called softmax
function. In order to get realistic estimates of confidence other
techniques have to be employed [39].

The last missing remark towards deep learning is the role of
availability of large amounts of data and labels or annotations
that could be gathered over the internet, the immense com-
pute power that became available by using graphics cards for
general purpose computations, and, last but not least, the pos-
itive trend towards open source software that enables users
world-wide to download and extend deep learning methods
very quickly. All three elements were crucial to enable this
extremely fast rise of deep learning.

2.5 Important architectures in deep learning

With the developments of the previous section, much
progress was made towards improved signal, image, video,
and audio processing, as already detailed earlier. In this intro-
duction, we are not able to highlight all developments, because
this would go well beyond the scope of this document, and
there are other sources that are more suited for this pur-
pose [31,37,12]. Instead, we will only shortly discuss some
advanced network architectures that we believe had, or will
have, an impact on medical image processing.

Autoencoders use a contracting and an expanding branch
to find representations of the input of a lower dimensional-
ity [41]. They do not require annotations, as the network is
trained to predict the original input using loss functions such
as L(0) = ||}‘(x) — x| |%. Variants use convolutional networks
[42], add noise to the input [43], or aim at finding sparse
representations [44].

Generative adversarial networks (GANs) employ two
networks to learn a representative distribution from the train-
ing data [45]. A generator network creates new images from
a noise input, while a discriminator network tries to differen-
tiate real images from generated images. Both are trained in
an alternating manner such that both gradually improve for
their respective tasks. GANs are known to generate plausible
and realistically looking images. So-called Wasserstein GANs
can reduce instability in training [46]. Conditional GANs [47]
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allow to encode states in the process such that images with
desired properties can be generated. CycleGANs [48] drive
this even further as they allow to convert one image from one
domain to another, for example from day to night, without
directly corresponding images in the training data.

Google’s inception network is an advanced and deep
architecture that was applied successfully for several tasks
[49]. Tts main highlight is the introduction of the so-called
inception block that essentially allows to compute convolu-
tions and pooling operations in parallel. By repeating this
block in a network, the network can select by itself in which
sequence convolution and pooling layers should be combined
in order to solve the task at hand effectively.

Ronneberger’s U-net is a breakthrough towards automatic
image segmentation [50] and has been applied successfully in
many tasks that require image-to-image transforms, for exam-
ple, images to segmentation masks. Like the autoencoder, it
consists of a contracting and an expanding branch, and it
enables multi-resolution analysis. In addition, U-net features
skip connections that connect the matching resolution levels
of the encoder and the decoder stage. Doing so, the archi-
tecture is able to model general high-resolution multi-scale
image-to-image transforms. Originally proposed in 2-D, many
extensions, such as 3-D versions, exist [51,52].

ResNets have been designed to enable training of very deep
networks [53]. Even with the methods described earlier in
this paper, networks will not benefit from more than 30 to 50
layers, as the gradient flow becomes numerically unstable in
such deep networks. In order to alleviate the problem, a so-
called residual block is introduced, and layers take the form

}(x) =x+ }/(x), where }/(x) contains the actual network
layer. Doing so has the advantage that the addition introduces
a second parallel branch into the network that lets the gradient
flow from end to end. ResNets also have other interesting
properties, e.g., their residual blocks behave like ensembles
of classifiers [54].

Variational networks enable the conversion of an energy
minimization problem into a neural network structure [55].
We consider this type of network as particular interesting,
as many problems in traditional medical image processing
are expressed as energy minimization problems. The main
idea is as follows: The energy function is typically mini-
mized by optimization programs such as gradient descent.
Thus, we are able to use the gradient of the original problem
to construct a so-called variational unit that describes exactly
one update step of the optimization program. Succession of
such units then describe the complete variational network.
Two observations are noteworthy: First, this type of frame-
work allows to learn operators within one variational unit,
such as a sparsifying transform for compressed sensing prob-
lems. Second, the variational units generally form residual
blocks, and thus variational networks are always ResNets as
well.

Recurrent neural networks (RNNs) enable the processing
of sequences with long term dependencies [56]. Furthermore,

recurrent nets introduce state variables that allow the cells to
carry memory and essentially model any finite state machine.
Extensions are long-short-term memory (LSTM) networks
[57] and gated recurrent units (GRU) [58] that can model
explicit read and write memory transactions similar to a com-
puter.

2.6 Advanced deep learning concepts

In addition to the above mentioned architectures, there are
also useful concepts that allow building more robust and ver-
satile networks. Again, the here listed methods are incomplete.
Still, we aimed at including the most useful ones.

Data augmentation In data augmentation, common
sources of variation are explicitly added to training samples.
These models of variation typically include noise, changes
in contrast, and rotations and translations. In biased data, it
can be used to improve the numbers of infrequent observa-
tions. In particular, the success of U-net is also related to very
powerful augmentation techniques that include, for example,
non-rigid deformations of input images and the desired seg-
mentation [50]. In most recent literature, reports are found
that also GANs are useful for data augmentation [59].

Precision learning is a strategy to include known operators
into the learning process [60]. While this idea is counter-
intuitive for most recognition tasks, where we want to learn
the optimal representation, the approach is actually very use-
ful for signal processing tasks in which we know a priori that
a certain operator must be present in the processing chain.
Embedding the operator in the network reduces the maximal
training error, reduces the number of unknowns and therefore
the number of required training samples, and enables mix-
ing of most signal processing methods with deep learning.
The approach is applicable to a broad range of operators. The
main requirement is that a gradient or sub-gradient must exist.

Adversarial examples consider the input to a neural net-
work as a possible weak spot that could be exploited by an
attacker [61]. Generally, attacks try to find a perturbation e
such that }”(x + e) indicates a different class than the true
v, while keeping the magnitude of e low, for example, by
minimizing ||e||%. Using different objective functions allows
to form different types of attacks. Attacks range from gen-
erating noise that will mislead the network, but will remain
unnoticed by a human observer, to specialized patterns that
will even mislead networks after printing and re-digitization
[62].

Deep reinforcement learning is a technique that allows to
train an artificial agent to perform actions given inputs from an
environment and expands on traditional reinforcement learn-
ing theory [63]. In this context, deep networks are often used as
flexible function approximators representing value functions
and/or policies [4]. In order to enable time-series processing,
sequences of environmental observations can be employed

[5].
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3 Results

As can be seen in the last few paragraphs, deep learning
now offers a large set of new tools that are applicable to
many problems in the world of medical image processing.
In fact, these tools have already been widely employed. In
particular, perceptual tasks are well suited for deep learning.
We present some highlights that are discussed later in this
section in Fig. 7. On the international conference of Med-
ical Image Computing and Computer-Assisted Intervention
(MICCAI) in 2018, approximately 70% of all accepted pub-
lications were related to the topic of deep learning. Given this
fast pace of progress, we are not able to describe all rele-
vant publications here. Hence, this overview is far from being
complete. Still we want to highlight some publications that
are representative for the current developments in the field.
In terms of structure and organization, we follow [22] here,
but add recent developments in physical simulation and image
reconstruction.

3.1 Image detection and recognition

Image detection and recognition deals with the problem
of detecting a certain element in a medical image. In many
cases, the images are volumetric. Therefore efficient parsing
is a must. A popular strategy to do so is marginal space learn-
ing [64], as it is efficient and allows to detect organs robustly.
Its deep learning counter-part [65] is even more efficient, as
its probabilistic boosting trees are replaced using a neural
network-based boosting cascade. Still, the entire volume has
to be processed to detect anatomical structures reliably. [65]
drives efficiency even further by replacing the search process
by an artificial agent that follows anatomy to detect anatomical
landmarks using deep reinforcement learning. The method is
able to detect hundreds of landmarks in a complete CT volume
in few seconds.

Bier et al. proposed an interesting method in which they
detect anatomical landmarks in 2-D X-ray projection images
[66]. In their method, they train projection-invariant fea-
ture descriptors from 3-D annotated landmarks using a deep
network. Yet another popular method for detection are the so-
called region proposal convolutional neural networks. In [67]
they are applied to robustly detect tumors in mammographic
images.

Detection and recognition are obviously also applied in
many other modalities and a great body of literature exists.
Here, we only report two more applications. In histology,
cell detection and classification is an important task, which is
tackled by Aubreville et al. using guided spatial transformer
networks [68] that allow refinement of the detection before the
actual classification is done. The task of mitosis classification
benefits from this procedure. Convolutional neural networks
are also very effective for other image classification tasks. In

[69] they are employed to automatically detect images con-
taining motion artifacts in confocal laser-endoscopy images.

3.2 Image segmentation

Also image segmentation greatly benefited from the recent
developments in deep learning. In image segmentation, we
aim to determine the outline of an organ or anatomical struc-
ture as accurately as possible. Again, approaches based on
convolutional neural networks seem to dominate. Here, we
only report Holger Roth’s Deeporgan [72], the brain MR
segmentation using CNN by Moeskops et al. [73], a fully
convolutional multi-energy 3-D U-net presented by Chen et al.
[74], and a U-net-based stent segmentation in X-ray projection
domain by Breininger et al. [71] as representative examples.
Obviously segmentation using deep convolutional networks
also works in 2-D as shown by Nirschl et al. for histopatho-
logic images [75].

Middleton et al. already experimented with the fusion of
neural networks and active contour models in 2004 well before
the advent of deep learning [76]. Yet, their approach is neither
using deep nets nor end-to-end training, which would be desir-
able for a state-of-the-art method. Hence, revisiting traditional
segmentation approaches and fusing them with deep learning
in an end-to-end fashion seems a promising scope of research.
Fu et al. follow a similar idea by mapping Frangi’s vesselness
into a neural network [77]. They demonstrate that they are
able to adjust the convolution kernels in the first step of the
algorithm towards the specific task of vessel segmentation in
ophthalmic fundus imaging.

Yet another interesting class of segmentation algorithms is
the use of recurrent networks for medical image segmentation.
Poudel et al. demonstrate this for a recurrent fully convolu-
tional neural network on multi-slice MRI cardiac data [78],
while Andermatt et al. show effectiveness of GRUs for brain
segmentation [79].

3.3 Image registration

While the perceptual tasks of image detection and classi-
fication have been receiving a lot of attention with respect
to applications of deep learning, image registration has not
seen this large boost yet. However, there are several promis-
ing works found in the literature that clearly indicate that there
are also a lot of opportunities.

One typical problem in point-based registration is to find
good feature descriptors that allow correct identification of
corresponding points. Wu et al. propose to do so using autoen-
coders to mine good features in an unsupervised way [80].
Schaffert et al. drive this even further and use the registration
metric itself as loss function for learning good feature repre-
sentations [81]. Another option to solve 2-D/3-D registration
problems is to estimate the 3-D pose directly from the 2-D
point features [82].
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Front Corner
,  Left Hip-Bone

Figure 7. Deep learning excels in perceptual tasks such as detection and segmentation. The left hand side shows the artificial agent-based
landmark detection after Ghesu et al. [70] and the X-ray transform-invariant landmark detection by Bier et al. [66] (projection image
courtesy of Dr. Unberath). The right hand side shows a U-net-based stent segmentation after Breininger et al. [71]. Images are reproduced

with permission by the authors.

For full volumetric registration, examples of deep learning-
based approaches are also found. The quicksilver algorithm is
able to model a deformable registration and uses a patch-wise
prediction directly from the image appearance [83]. Another
approach is to model the registration problem as a control
problem that is dealt with using an agent and reinforcement
learning. Liao et al. propose to do so for rigid registration
predicting the next optimal movement in order to align both
volumes [84]. This approach can also be applied to non-rigid
registration using a statistical deformation model [85]. In this
case, the actions are movements in the vector space of the
deformation model. Obviously, agent-based approaches are
also applicable for point-based registration problems. Zhong
et al. demonstrate this for intra-operative brain shift using
imitation learning [86].

3.4 Computer-aided diagnosis

Computer-aided diagnosis is regarded as one of the most
challenging problems in the field of medical image processing.
Here, we are not only acting in a supportive role quantifying
evidence towards the diagnosis. Instead the diagnosis itself is
to be predicted. Hence, decisions have to be done with utmost
care and decisions have to be reliable.

The analysis of chest radiographs comprises a significant
amount of work for radiologistic and is performed routinely.
Hence, reliable support to prevent human error is highly desir-
able. An example to do so is given in [87] by Diamant et al.
using transfer learning techniques.

A similar workload is imposed on ophthalmologists in the
reading of volumetric optical coherence tomography data.
Google’s Deep Mind just recently proposed to support this
process in terms of referral decision support [88].

There are many other studies found in this line, for example,
automatic cancer assessment in confocal laser endoscopy in
different tissues of the head and neck [89], deep learning for
mammogram analysis [90], and classification of skin cancer
[91].

3.5 Physical simulation

A new field of deep learning is the support of physical mod-
eling. So far this has been exploited in the gaming industry to
compute realistically appearing physics engines [92], or for
smoke simulation [93] in real-time. A first attempt to bring
deep learning to bio-medical modeling was done by Meister
et al. [94].

Based on such observations, researchers started to bring
such methods into the field of medical imaging. One example
to do so is the deep scatter estimation by Maier et al. [95].
Unberath et al. drive this even further to emulate the com-
plete X-ray formation process in their DeepDRR [96]. In [97]
Horger et al. demonstrate that even noise of unknown distri-
butions can be learned, leading to an efficient generative noise
model for realistic physical simulations.

Also other physical processes have been investigated using
deep learning. In [60] a material decomposition using deep
learning embedding prior physical operators using preci-
sion learning is proposed. Also physically less plausible
interrelations are attempted. In [98], Han et al. attempt to
convert MR volumes to CT volumes. Stimpel et al. drive this
even further predicting X-ray projections from MR projec-
tion images [99]. While these observations seem promising,
one has to follow such endeavors with care. Schiffers et al.
demonstrate that cycleGANs may create correctly appearing
fluorescence images from fundus images in ophthalmology
[100]. Yet, undesired effects appear, as occasionally drusen
are mapped onto micro aneurysms in this process. Cohen et al.
demonstrate even worse effects [101]. In their study, cancers
disappeared or were created during the modality-to-modality
mapping. Hence, such approaches have to be handled with
care.

3.6 Image reconstruction

Also the field of medical image reconstruction has been
affected by deep learning and was just recently the topic of a
special issue in the IEEE Transactions on Medical Imaging.
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The editorial actually gives an excellent overview on the latest
developments [102] that we will summarize in the next few
lines.

One group of deep learning algorithms omit the actual
problem of reconstruction and formulate the inverse as image-
to-image transforms with different initialization techniques
before processing with a neural network. Recent develop-
ments in this image-to-image reconstruction are summarized
in [103]. Still, there is continuous progress in the field, e.g.
by application of the latest network architectures [104] or
cascading of U-nets [105].

A recent paper by Zhu et al. proposes to learn the
entire reconstruction operation only from raw data and cor-
responding images [106]. The basic idea is to model an
autoencoder-like dimensionality reduction in raw data and
reconstruction domain. Then both are linked using a non-
linear correlation model. The entire model can then be
converted into a single network and trained in an end-to-end
manner. In the paper, they show that this is possible for 2-
D MR and PET imaging and largely outperforms traditional
approaches.

Learning operators completely data-driven carries the risk
that undesired effects may occur [107], as is shown in Fig. 8.
Hence integration of prior knowledge and the structure of the
operators seems beneficial, as already described in the con-
cept of precision learning in the previous section. Ye et al.
embed a multi-scale transform into the encoder and decoder
of a U-net-like network, which gives rise to the concept of
deep convolutional framelets [108]. Using wavelets for the
multi-scale transform has been successfully applied in many
applications ranging from denoising [ 109] to sparse view com-
puted tomography [110].

If we design a neural network inspired by iterative algo-
rithms that minimize an energy function step by step, the
concept of variational networks is useful. Doing so allows to
map virtually all iterative reconstruction algorithms onto deep
networks, e.g., by using a fixed number of iterations. There
are several impressive works found in the literature, of which
we only name the MRI reconstruction by Hammernik et al.
[111] and the sound speed reconstruction by Vishnevskiy et al.
[112] at this point. The concept can be expanded even further,
as Adler et al. demonstrate by learning an entire primal-dual
reconstruction [113].

Wiirfl et al. also follow the idea of using prior opera-
tors [114,115]. Their network is inspired by the classical
filtered back-projection that can be retrained to better approxi-
mate limited angle geometries that typically cannot be solved
by classical analytic inversion models. Interestingly, as the
approach is described in an end-to-end fashion, errors in the
discretization or initialization of the filtering steps are intrinsi-
cally corrected by the learning process [116]. They also show
that their method is compatible with other approaches, such
as variational networks that are able to learn an additional
de-streaking sparsifying transform [117]. Syben et al. drive
these efforts even further and demonstrate that the concept of

precision learning is able to mathematically derive a neural
network structure [118]. In their work, they demonstrate that
they are able to postulate that an expensive matrix inverse is a
circulant matrix and hence can be replaced by a convolution
operation. Doing so leads to the derivation of a previously
unknown filtering, back-projection, re-projection-style rebin-
ning algorithm that intrinsically suffers less from resolution
loss than traditional interpolation-based rebinning methods.

As noted earlier, all networks are prone to adversarial
attacks. Huang et al. demonstrate this [107] in their work,
showing that already incorrect noise modeling may distort
the entire image. Yet, the networks reconstruct visually pleas-
ing results and artifacts cannot be as easily identified as in
classical methods. One possible remedy is to follow the pre-
cision learning paradigm and fix as much of the network as
possible, such that it can be analyzed with classical meth-
ods as demonstrated in [115]. Another promising approach is
Bayesian deep learning [39]. Here the network output is two-
fold: the reconstructed image plus a confidence map on how
accurate the content of the reconstructed image was actually
measured.

Obviously, deep learning also plays a role in suppression
of artifacts. In [119], Zhang et al. demonstrate this effectively
for metal artifacts. As a last example, we list Bier et al. here,
as they show that deep learning-based motion tracking is also
feasible for motion compensated reconstruction [120].

4 Discussion

In this introduction, we reviewed the latest developments
in deep learning for medical imaging. In particular detection,
recognition, and segmentation tasks are well solved by the
deep learning algorithms. Those tasks are clearly linked to
perception and there is essentially no prior knowledge present.
Hence, state-of-the-art architectures from other fields, such
as computer vision, can often be easily adopted to medical
tasks. In order to gain better understanding of the black box,
reinforcement learning and modeling of artificial agents seem
well suited.

In image registration, deep learning is not that broadly
used. Yet, interesting approaches already exist that are able
to either predict deformations directly from the image input,
or take advantage of reinforcement learning-based techniques
that model registration as on optimal control problem. Further
benefits are obtained using deep networks for learning repre-
sentations, which are either done in an unsupervised fashion
or using the registration metric itself.

Computer-aided diagnosis is a hot topic with many recent
publications address. We expect that simpler standard tasks
that typically result in a high workload for medical doctors
will be solved first. For more complex diagnoses, the cur-
rent deep nets that immediately result in a decision are not
that well suited, as it is difficult to understand the evidence.
Hence, approaches are needed that link observations to evi-
dence to construct a line of argument towards a decision. It
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Reference

Limited Angle

No Noise

Poisson Noise Unexpected Result

Figure 8. Results from a deep learning image-to-image reconstruction based on U-net. The reference image with a lesion embedded is
shown on the left followed by the analytic reconstruction result that is used as input to U-net. U-net does an excellent job when trained and
tested without noise. If unmatched noise is provided as input, an image is created that appears artifact-free, yet not just the lesion is gone,
but also the chest surface is shifted by approximately 1 cm. On the right hand side, an undesirable result is shown that emerged at some point
during training of several different versions of U-net which shows organ-shaped clouds in the air in the background of the image. Note that
we omitted displaying multiple versions of “Limited Angle” as all three inputs to the U-Nets would appear identically given the display

window of the figure of [—1000, 1000] HU.

is the strong belief of the authors that only if such evidence-
based decision making is achieved, the new methodology will
make a significant impact to computer-aided diagnosis.

Physical simulation can be accelerated dramatically with
realistic outcomes as shown in the field of computer games
and graphics. Therefore, the methods are highly relevant,
in particular for interventional applications, in which real-
time processing is mandatory. First approaches exist, yet
there is considerable room for more new developments. In
particular, precision learning and variational networks seem
to be well suited for such tasks, as they provide some
guarantees to prediction outcomes. Hence, we believe that
there are many new developments to follow, in particu-
lar in radiation therapy and real-time interventional dose
tracking.

Reconstruction based on data-driven methods yield impres-
sive results. Yet, they may suffer from a “new kind” of deep
learning artifacts. In particular, the work by Huang et al. [107]
show these effects in great detail. Both precision learning and
Bayesian approaches seem well suited to tackle the problem in
the future. Yet, it is unclear how to benefit best from the data-
driven methods while maintaining intuitive and safe image
reading.

A great advantage of all the deep learning methods is
that they are inherently compatible to each other and to
many classical approaches. This fusion will spark many
new developments in the future. In particular, the fusion on
network-level using either the direct connection of networks
or precision learning allows end-to-end training of algorithms.
The only requirement for this deep fusion is that each oper-
ation in the hybrid net has a gradient or sub-gradient for the
optimization. In fact, there are already efforts to design whole
programming languages to be compatible with this kind of dif-
ferential programming [121]. With such integrated networks,
multi-task learning is enabled, for example, training of net-
works that deliver optimal reconstruction quality and the best
volumetric overlap of the resulting segmentation at the same

time, as already conjectured in [122]. This point may even be
expanded to computer-aided diagnosis or patient benefit.

In general, we observe that the CNN architectures that
emerge from deep learning are computationally very efficient.
Networks find solutions that are on par or better than many
state-of-the-art algorithms. However, their computational cost
at inference time is often much lower than state-of-the-art
algorithms in typical domains of medical imaging in detec-
tion, segmentation, registration, reconstruction, and physical
simulation tasks. This benefit at run-time comes at high com-
putational cost during training that can take days even on GPU
clusters. Given an appropriate problem domain and training
setup, we can thus exploit this effect to save run-time at the
cost of additional training time.

Deep learning is extremely data hungry. This is one of the
main limitations that the field is currently facing, and per-
formance grows only logarithmically with the amount of data
used [123]. Approaches like weakly supervised training [ 124]
will only partially be able to close this gap. Hence, one hos-
pital or one group of researchers will not be able to gather a
competitive amount of data in the near future. As such, we
welcome initiatives such as the grand challenges® or medical
data donors,* and hope that they will be successful with their
mission.

5 Conclusion

In this short introduction to deep learning in medical image
processing we were aiming at two objectives at the same time.
On the one hand, we wanted to introduce to the field of deep
learning and the associated theory. On the other hand, we
wanted to provide a general overview on the field and potential
future applications. In particular, perceptual tasks have been

3 https://grand-challenge.org.
4 http://www.medicaldatadonors.org.
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studied most so far. However, with the set of tools presented
here, we believe many more problems can be tackled. So far,
many problems could be solved better than the classical state-
of-the-art does alone, which also sparked significant interest
in the public media. Generally, safety and understanding of
networks is still a large concern, but methods to deal with this
are currently being developed. Hence, we believe that deep
learning will probably remain an active research field for the
coming years.

If you enjoyed this introduction, we recommend that
you have a look at our video lecture that is available at
https://www.video.uni-erlangen.de/course/id/662.

Acknowledgements

We express our thanks to Katharina Breininger, Tobias
Wiirfl, and Vincent Christlein, who did a tremendous job
when we created the deep learning course at the Univer-
sity of Erlangen-Nuremberg. Furthermore, we would like
to thank Florin Ghesu, Bastian Bier, Yixing Huang, and
again Katharina Breininger for the permission to high-
light their work and images in this introduction. Last
but not least, we also express our gratitude to the par-
ticipants of the course “Computational Medical Imaging”
(https://wwwS5.cs.fau.de/lectures/sarntal-2018/), who were
essentially the test audience of this article during the summer
school “Ferienakademie 2018”.

References

[1] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436.

[2] Dahl GE, YuD, DengL, Acero A. Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Trans
Actions Audio Speech Lang Process 2012;20:30—42.

[3] Krizhevsky A, Sutskever I, Hinton GE. ImageNET classification with
deep convolutional neural networks. In: Advances in neural informa-
tion processing systems; 2012. p. 1097-105.

[4] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche
G, et al. Mastering the game of go with deep neural networks and tree
search. Nature 2016:;529:484.

[5] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, et al. Human-level control through deep reinforcement learning.
Nature 2015;518:529.

[6] Mordvintsev A, Olah C, Tyka M. Inceptionism: going deeper into
neural networks. Google Research Blog; 2015. p. 5. Retrieved June
20.

[7] Tan WR, Chan CS, Aguirre HE, Tanaka K. ArtGAN: artwork synthe-
sis with conditional categorical GANSs. In: 2017 IEEE International
Conference on Image Processing (ICIP). IEEE; 2017. p. 3760—4.

[8] Briot J, Hadjeres G, Pachet F. Deep learning techniques for music
generation — a survey; 2017. CoRR abs/1709.01620.

[9] Seebock P. Deep learning in medical image analysis (Master’s thesis).
Vienna University of Technology, Faculty of Informatics; 2015.

[10] Shen D, Wu G, Suk H-I. Deep learning in medical image analysis.
Annu Rev Biomed Eng 2017;19:221-48.

[11] Pawlowski N, Ktena SI, Lee MC, Kainz B, Rueckert D, Glocker
B, et al. DLTK: state of the art reference implementations for deep
learning on medical images; 2017 arXiv:1711.06853.

[12] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian
M, et al. A survey on deep learning in medical image analysis. Med
Image Anal 2017;42:60-88.

[13] Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for
medical imaging. Radiographics 2017;37:505-15.

[14] Suzuki K. Survey of deep learning applications to medical image
analysis. Med Imaging Technol 2017;35:212-26.

[15] Hagerty J, Stanley RJ, Stoecker WV. Medical image processing in
the age of deep learning. In: Proceedings of the 12th international
joint conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP). 2017. p. 306-11.

[16] Lakhani P, Gray DL, Pett CR, Nagy P, Shih G. Hello world deep
learning in medical imaging. J Digit Imaging 2018;31:283-9.

[17] Kim J, Hong J, Park H, Kim J, Hong J, Park H. Prospects of deep
learning for medical imaging. Precis Future Med 2018;2:37-52.

[18] Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical
image analysis. IEEE Access 2018;6:9375-89.

[19] Rajchl M, Ktena SI, Pawlowski N. An introduction to
biomedical image analysis with TensorFlow and DLTK; 2018
https://medium.com/tensorflow/an-introduction-to-biomedical-image-
analysis-with-tensorflow-and-dltk-2¢25304e7c13.

[20] Breininger K, Wiirfl T. Tutorial: how to build a deep learning frame-
work; 2018 https://github.com/kbreininger/tutorial-dlframework.

[21] Cornelisse D. An intuitive guide to Convolutional Neu-
ral Networks; 2018 https://medium.freecodecamp.org/
an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050.

[22] Zhou SK, Greenspan H, Shen D. Deep learning for medical image
analysis. Academic Press; 2017.

[23] Lu L, Zheng Y, Carneiro G, Yang L. Deep learning and convolutional
neural networks for medical image computing. Springer; 2017.

[24] Chollet F. Deep learning with python. Manning Publications Co.; 2017.

[25] Géron A. Hands-on machine learning with Scikit-Learn and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, Inc.; 2017.

[26] Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH,
et al. Deep learning in medical imaging. Med Phys 2018;46(1):e1-36.

[27] Niemann H. Pattern analysis and understanding, vol. 4. Springer Sci-
ence & Business Media; 2013.

[28] Rosenblatt F. The perceptron, a perceiving and recognizing automaton
(Project Para). Cornell Aeronautical Laboratory; 1957.

[29] Cybenko G. Approximation by superpositions of a sigmoidal function.
Math Control Signals Syst 1989;2:303—-14.

[30] Hornik K. Approximation capabilities of multilayer feedforward net-
works. Neural Netw 1991;4:251-7.

[31] Bengio Y, Courville A, Vincent P. Representation learning: a
review and new perspectives. IEEE Trans Pattern Anal Mach Intell
2013;35:1798-828.

[32] Ivanova I, Kubat M. Initialization of neural networks by means of
decision trees. Knowl Based Syst 1995;8:333-44.

[33] Sonoda S, Murata N. Neural network with unbounded activation
functions is universal approximator. Appl Comput Harmon Anal
2017;43:233-68.

[34] Rockafellar R. Convex analysis, Princeton landmarks in mathematics
and physics. Princeton University Press; 1970.

[35] Bertsekas DP, Scientific A. Convex optimization algorithms. Athena
Scientific Belmont; 2015.

[36] Schirrmacher F, Kohler T, Husvogt L, Fujimoto JG, Hornegger J, Maier
AK. QuaSI: quantile sparse image prior for spatio-temporal denoising
of retinal OCT data. In: Medical Image Computing and Computer-
Assisted Intervention, MICCAI 2017: 20th international conference,
proceedings, vol. 10434. Springer; 2017. p. 83.

[37] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol.
1. Cambridge: MIT Press; 2016.

[38] Maier A, Schuster M, Eysholdt U, Haderlein T, Cincarek T, Steidl
S, et al. QMOS - a robust visualization method for speaker depen-
dencies with different microphones. J Pattern Recognit Res 2009;4:
32-51.


https://www.video.uni-erlangen.de/course/id/662
https://www5.cs.fau.de/lectures/sarntal-2018/
https://arxiv.org/abs/1711.06853
https://medium.com/tensorflow/an-introduction-to-biomedical-image-analysis-with-tensorflow-and-dltk-2c25304e7c13
https://medium.com/tensorflow/an-introduction-to-biomedical-image-analysis-with-tensorflow-and-dltk-2c25304e7c13
https://github.com/kbreininger/tutorial-dlframework
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050

A. Maier et al./Z Med Phys 29 (2019) 86-101 99

[39] Schlemper J, Castro DC, Bai W, Qin C, Oktay O, Duan J, et al.
Bayesian deep learning for accelerated MR image reconstruction. In:
Knoll F, Maier A, Rueckert D, editors. Machine learning for medical
image reconstruction. Cham: Springer International Publishing; 2018.
p. 64-71.

[40] Dumoulin V, Visin F. A guide to convolution arithmetic for deep
learning; 2016 [ArXiv e-prints].

[41] Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and
composing robust features with denoising autoencoders. In: Proceed-
ings of the 25th international conference on machine learning. ACM;
2008. p. 1096-103.

[42] Holden D, Saito J, Komura T, Joyce T. Learning motion manifolds
with convolutional autoencoders. In: SIGGRAPH Asia 2015 Technical
Briefs. ACM; 2015. p. 18.

[43] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A.
Stacked denoising autoencoders: learning useful representations in
a deep network with a local denoising criterion. J Mach Learn Res
2010;11:3371-408.

[44] Huang FJ, Boureau Y-L, LeCun Y, Huang Fu Jie, Boureau Y-Lan,
LeCun Yann, et al. Unsupervised learning of invariant feature hier-
archies with applications to object recognition. In: IEEE conference
on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE;
2007. p. 1-8.

[45] Goodfellow I. NIPS 2016 tutorial: generative adversarial networks;
2016 arXiv:1701.00160.

[46] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial
networks. In: International conference on machine learning. 2017. p.
214-23.

[47] Gauthier J. Conditional generative adversarial nets for convolutional
face generation. In: Class Project for Stanford CS231N: Convolutional
Neural Networks for Visual Recognition, Winter semester 2014; 2014.
p. 2.

[48] Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks; 2017.

[49] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going
deeper with convolutions. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015. p. 1-9.

[50] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. In: International conference on med-
ical image computing and computer-assisted intervention. Springer;
2015. p. 234-41.

[51] Cigek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D
U-NET: learning dense volumetric segmentation from sparse anno-
tation. In: International conference on medical image computing and
computer-assisted intervention. Springer; 2016. p. 424-32.

[52] Milletari F, Navab N, Ahmadi S-A. V-Net: fully convolutional neu-
ral networks for volumetric medical image segmentation. In: 2016
fourth international conference on 3D Vision (3DV). IEEE; 2016. p.
565-71.

[53] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015. p. 770-8.

[54] Veit A, Wilber MJ, Belongie S. Residual networks behave like ensem-
bles of relatively shallow networks. In: Advances in neural information
processing systems; 2016. p. 550-8.

[55] KoblerE, Klatzer T, Hammernik K, Pock T. Variational networks: con-
necting variational methods and deep learning. In: German conference
on pattern recognition. Springer; 2017. p. 281-93.

[56] Mandic DP, Chambers J. Recurrent neural networks for prediction:
learning algorithms, architectures and stability. John Wiley & Sons,
Inc.; 2001.

[57] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Com-
put 1997;9:1735-80.

[58] Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation
of gated recurrent neural networks on sequence modeling; 2014
arXiv:1412.3555.

[59] Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J,
Greenspan H. GAN-based synthetic medical image augmentation for
increased CNN performance in liver lesion classification; 2018. CoRR
abs/1803.01229.

[60] Maier A, Schebesch F, Syben C, Wiirfl T, Steidl S, Choi J-H, et al. Pre-
cision learning: towards use of known operators in neural networks. In:
Tan JKT, editor. 24th International Conference on Pattern Recognition
(ICPR). 2018. p. 183-8.

[61] Yuan X, He P, Zhu Q, Bhat RR, Li X. Adversarial examples: attacks
and defenses for deep learning; 2017 arXiv:1712.07107.

[62] Brown TB, Mané D, Roy A, Abadi M, Gilmer J. Adversarial patch;
2017 arXiv:1712.09665.

[63] Sutton RS, Barto AG, Bach F, Sutton, Richard S, Barto Andrew G,
et al. Reinforcement learning: an introduction. MIT Press; 1998.

[64] Zheng Y, Comaniciu D. Marginal space learning. In: Marginal space
learning for medical image analysis. Springer; 2014. p. 25-65.

[65] Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, Hornegger J,
et al. Marginal space deep learning: efficient architecture for volumet-
ric image parsing. IEEE Trans Med Imaging 2016;35:1217-28.

[66] Bier B, Unberath M, Zaech J-N, Fotouhi J, Armand M, Osgood G,
et al. X-ray-transform invariant anatomical landmark detection for
pelvic trauma surgery. In: Frangi AF, Schnabel JA, Davatzikos C,
Alberola-Lépez C, Fichtinger G, editors. Medical Image Computing
and Computer Assisted Intervention - MICCAI 2018. Cham: Springer
International Publishing; 2018. p. 55-63.

[67] Akselrod-Ballin A, Karlinsky L, Alpert S, Hasoul S, Ben-Ari R,
Barkan E. A region based convolutional network for tumor detection
and classification in breast mammography. In: Deep learning and data
labeling for medical applications. Springer; 2016. p. 197-205.

[68] Aubreville M, Krappmann M, Bertram C, Klopfleisch R, Maier A.
A guided spatial transformer network for histology cell differenti-
ation. In: Association TE, editor. Eurographics workshop on visual
computing for biology and medicine. 2017. p. 21-5.

[69] Aubreville M, Stove M, Oetter N, de Jesus Goncalves M,
Knipfer C, Neumann H, et al. Deep learning-based detection
of motion artifacts in probe-based confocal laser endomi-
croscopy images. Int J Comput Assist Radiol Surg 2018,
http://dx.doi.org/10.1007/s11548-018-1836-1.

[70] Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger
J, et al. Multi-scale deep reinforcement learning for real-time 3D-
landmark detection in CT scans. IEEE Trans Pattern Anal Mach Intell
2017;41(1):176-89.

[71] Breininger K, Albarqouni S, Kurzendorfer T, Pfister M, Kowarschik
M, Maier A. Intraoperative stent segmentation in X-ray fluoroscopy for
endovascular aortic repair. Int J Comput Assist Radiol Surg 2018;13.

[72] Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, et al. DeepOr-
gan: multi-level deep convolutional networks for automated pancreas
segmentation. In: International conference on medical image comput-
ing, computer-assisted intervention. Springer; 2015. p. 556-64.

[73] Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders
MJ, I§gum I. Automatic segmentation of MR brain images with a
convolutional neural network. IEEE Trans Med Imaging 2016;35:
1252-61.

[74] Chen S, Zhong X, Hu S, Dorn S, Kachelriess M, Lell M, et al. Auto-
matic multi-organ segmentation in dual energy CT using 3D fully
convolutional network. In: van Ginneken B, Welling M, editors. MIDL.
2018.

[75] Nirschl JJ, Janowczyk A, Peyster EG, Frank R, Margulies KB,
Feldman MD, et al. Deep learning tissue segmentation in cardiac
histopathology images. In: Deep learning for medical image analysis.
Elsevier; 2017. p. 179-95.

[76] Middleton I, Damper RI. Segmentation of magnetic resonance images
using a combination of neural networks and active contour models.
Med Eng Phys 2004;26:71-86.

[77] Fu W, Breininger K, Schaffert R, Ravikumar N, Wiirfl T, Fujimoto J,
etal. Frangi-Net: a neural network approach to vessel segmentation. In:


https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1712.07107
https://arxiv.org/abs/1712.09665
dx.doi.org/10.1007/s11548-018-1836-1

100

A. Maier et al./Z Med Phys 29 (2019) 86-101

Maier A, Deserno Th, Handels H, Maier-Hein KH, Palm C, Tolxdorff
Th, editors. Bildverarbeitung fiir die Medizin. 2018. p. 341-6.

[78] Poudel RP, Lamata P, Montana G. Recurrent fully convolutional neural
networks for multi-slice MRI cardiac segmentation. In: Reconstruc-
tion, segmentation, and analysis of medical images. Springer; 2016.
p. 83-94.

[79] Andermatt S, Pezold S, Cattin P. Multi-dimensional gated recurrent
units for the segmentation of biomedical 3D-data. In: Deep learning
and data labeling for medical applications. Springer; 2016. p. 142-51.

[80] Wu G, Kim M, Wang Q, Munsell BC, Shen D. Scalable
high-performance image registration framework by unsupervised
deep feature representations learning. IEEE Trans Biomed Eng
2016;63:1505-16.

[81] Schaffert R, Wang J, Fischer P, Borsdorf A, Maier A. Metric-driven
learning of correspondence weighting for 2-D/3-D image registration.
In: German Conference on Pattern Recognition (GCPR). 2018.

[82] Miao S, Wang JZ, Liao R. Convolutional neural networks for robust
and real-time 2-D/3-D registration. In: Deep learning for medical
image analysis. Elsevier; 2017. p. 271-96.

[83] Yang X, Kwitt R, Styner M, Niethammer M. Quicksilver: fast pre-
dictive image registration — a deep learning approach. Neurolmage
2017;158:378-96.

[84] Liao R, Miao S, de Tournemire P, Grbic S, Kamen A, Mansi T, et al.
An artificial agent for robust image registration. In: AAAIL 2017. p.
4168-75.

[85] Krebs J, Mansi T, Delingette H, Zhang L, Ghesu FC, Miao S, et al.
Robust non-rigid registration through agent-based action learning.
In: Medical Image Computing and Computer-Assisted Intervention
— MICCAL Springer; 2017. p. 344-52.

[86] Zhong X, Bayer S, Ravikumar N, Strobel N, Birkhold A, Kowarschik
M, et al. Resolve intraoperative brain shift as imitation game. In: MIC-
CAI Challenge 2018 for Correction of Brainshift with Intra-Operative
Ultrasound (CuRIOUS 2018). 2018.

[87] Diamant I, Bar Y, Geva O, Wolf L, Zimmerman G, Lieberman S, et al.
Chest radiograph pathology categorization via transfer learning. In:
Deep learning for medical image analysis. Elsevier; 2017. p. 299-320.

[88] De Fauw JR, Ledsam B, Romera-Paredes S, Nikolov N, Tomasev S,
Blackwell H, et al. Clinically applicable deep learning for diagnosis
and referral in retinal disease. Nat Med 2018;24:1342.

[89] Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler
J, et al. Automatic classification of cancerous tissue in laserendomi-
croscopy images of the oral cavity using deep learning. Sci Rep
2017;7:41598-017.

[90] Carneiro G, Nascimento J, Bradley AP. Deep learning models for
classifying mammogram exams containing unregistered multi-view
images and segmentation maps of lesions. In: Deep learning for med-
ical image analysis. Elsevier; 2017. p. 321-39.

[91] Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.
Dermatologist-level classification of skin cancer with deep neural net-
works. Nature 2017;542:115.

[92] Wul, Yildirim I, Lim JJ, Freeman B, Tenenbaum J. Galileo: perceiving
physical object properties by integrating a physics engine with deep
learning. In: Advances in neural information processing systems; 2015.
p. 127-35.

[93] Chu M, Thuerey N. Data-driven synthesis of smoke flows with CNN-
based feature descriptors. ACM Trans Graph 2017;36:69.

[94] Meister F, Passerini T, Mihalef V, Tuysuzoglu A, Maier A, Mansi
T. Towards fast biomechanical modeling of soft tissue using neural
networks. In: Medical Imaging meets NeurIPS workshop at 32nd
conference on Neural Information Processing Systems (NeurIPS).
2018.

[95] Maier J, Berker Y, Sawall S, KachelrieS M. Deep scatter estimation
(DSE): feasibility of using a deep convolutional neural network for
real-time X-ray scatter prediction in cone-beam CT. Medical imaging
2018: physics of medical imaging, vol. 10573. International Society
for Optics and Photonics; 2018. p. 105731L.

[96] Unberath M, Zaech J-N, Lee SC, Bier B, Fotouhi J, Armand M, et al.
DeepDRR - a catalyst for machine learning in fluoroscopy-guided
procedures. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-Lopez
C, Fichtinger G, editors. Medical Image Computing and Computer
Assisted Intervention — MICCAI 2018. Cham: Springer International
Publishing; 2018. p. 98-106.

[97] Horger F, Wiirfl T, Christlein V, Maier A. Towards arbitrary
noise augmentation — deep learning for sampling from arbitrary
probability distributions. In: International workshop on machine
learning for medical image reconstruction. Springer; 2018. p.
129-37.

[98] Han X. MR-based synthetic CT generation using a deep convolutional
neural network method. Med Phys 2017;44:1408-19.

[99] Stimpel B, Syben C, Wiirfl T, Mentl K, Dorfler A, Maier A. MR to
X-ray projection image synthesis. In: Noo F, editor. Proceedings of the
5th international conference on image formation in X-ray computed
tomography (CT-meeting). 2018. p. 435-8.

[100] Schiffers F, YuZ, Arguin S, Maier A, Ren Q. Synthetic fundus fluores-
cein angiography using deep neural networks. In: Maier A, Deserno
TM, Handels H, Maier-Hein KH, Palm C, Tolxdorff T, editors. Bild-
verarbeitung fiir die Medizin 2018. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2018. p. 234-8.

[101] Cohen JP, Luck M, Honari S. Distribution matching losses can
hallucinate features in medical image translation. In: Frangi AF,
Schnabel JA, Davatzikos C, Alberola-Lépez C, Fichtinger G, edi-
tors. Medical Image Computing and Computer Assisted Intervention
— MICCAI 2018. Cham: Springer International Publishing; 2018. p.
529-36.

[102] Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is
a new frontier of machine learning. IEEE Trans Med Imaging
2018;37:1289-96.

[103] McCann MT, Jin KH, Unser M. A review of convolutional neural
networks for inverse problems in imaging; 2017 arXiv:1710.04011.

[104] Zhang Z, Liang X, Dong X, Xie Y, Cao G. A sparse-view CT
reconstruction method based on combination of DenseNet and decon-
volution. IEEE Trans Med Imaging 2018;37:1407—-17.

[105] Kofler A, Haltmeier M, Kolbitsch C, Kachelrie M, Dewey M. A U-
Nets cascade for sparse view computed tomography. In: International
workshop on machine learning for medical image reconstruction.
Springer; 2018. p. 91-9.

[106] ZhuB, LiuJZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction
by domain-transform manifold learning. Nature 2018;555:487.

[107] Huang Y, Wiirfl T, Breininger K, Liu L, Lauritsch G, Maier A. Some
investigations on robustness of deep learning in limited angle tomog-
raphy. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-Lopez
C, Fichtinger G, editors. Medical Image Computing and Computer
Assisted Intervention — MICCAI 2018. Cham: Springer International
Publishing; 2018. p. 145-53.

[108] Ye JC, Han Y, Cha E. Deep convolutional framelets: a general
deep learning framework for inverse problems. SIAM J Imaging Sci
2018;11:991-1048.

[109] Kang E, Chang W, Yoo J, Ye JC. Deep convolutional framelet denos-
ing for low-dose CT via wavelet residual network. IEEE Trans Med
Imaging 2018;37:1358-69.

[110] Han Y, Ye JC. Framing U-Net via deep convolutional framelets:
application to sparse-view CT. IEEE Trans Med Imaging 2018;37:
1418-29.

[111] Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T,
et al. Learning a variational network for reconstruction of accelerated
mri data. Magn Reson Med 2018;79:3055-71.

[112] Vishnevskiy V, Sanabria SJ, Goksel O. Image reconstruction via vari-
ational network for real-time hand-held sound-speed imaging. In:
International workshop on machine learning for medical image recon-
struction. Springer; 2018. p. 120-8.

[113] Adler J, Oktem O. Learned primal-dual reconstruction. IEEE Trans
Med Imaging 2018;37:1322-32.


https://arxiv.org/abs/1710.04011

A. Maier et al./Z Med Phys 29 (2019) 86-101

101

[114]

[115]

[116]

[117]

[118]

Wiirfl T, Ghesu FC, Christlein V, Maier A. Deep learning computed
tomography. In: International conference on medical image computing
and computer-assisted intervention. Springer; 2016. p. 432-40.
Wiirfl T, Hoffmann M, Christlein V, Breininger K, Huang Y,
Unberath M, et al. Deep learning computed tomography: learning
projection-domain weights from image domain in limited angle prob-
lems. IEEE Trans Med Imaging 2018;37:1454-63.

Syben C, Stimpel B, Breininger K, Wiirfl T, Fahrig R, Dorfler
A, Maier A. Precision learning: Reconstruction filter kernel dis-
cretization. In: Proceedings of the Fifth International Conference
on Image Formation in X-Ray Computed Tomography. 2018. p.
386-90.

Hammernik K, Wiirfl T, Pock T, Maier A. A deep learning
architecture for limited-angle computed tomography reconstruction.
In: Maier-Hein KH, geb. Fritzsche, Deserno TM, geb. Lehmann,
Handels H, Tolxdorff T, editors. Bildverarbeitung fiir die Medi-
zin 2017. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017.
p. 92-7.

Syben C, Stimpel B, Lommen J, Wiirfl T, Dorfler A, Maier A. Deriving
neural network architectures using precision learning: parallel-to-fan

[119]

[120]

[121]

[122]
[123]

[124]

beam conversion. In: German Conference on Pattern Recognition
(GCPR). 2018.

Zhang Y, Yu H. Convolutional neural network based metal artifact
reduction in X-ray computed tomography. IEEE Trans Med Imaging
2018;37:1370-81.

Bier B, Aschoff K, Syben C, Unberath M, Levenston M, Gold G,
etal. Detecting anatomical landmarks for motion estimation in weight-
bearing imaging of knees. In: International workshop on machine
learning for medical image reconstruction. Springer; 2018. p. 83-90.
Li T-M, Gharbi M, Adams A, Durand F, Ragan-Kelley J. Differentiable
programming for image processing and deep learning in halide. ACM
Trans Graph 2018;37:139.

Wang G. A perspective on deep imaging. IEEE Access 2016;4:
8914-24.

Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable
effectiveness of datain deep learning era; 2017. p. 1 arXiv:1707.02968.
Oquab M, Bottou L, Laptev I, Sivic J. Is object localization for free?
Weakly-supervised learning with convolutional neural networks. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017. p. 685-94.

Available online at www.sciencedirect.com

ScienceDirect



https://arxiv.org/abs/1707.02968
http://www.sciencedirect.com/science/journal/09393889

	A gentle introduction to deep learning in medical image processing
	1 Introduction
	2 Materials and methods
	2.1 Introduction to machine learning and pattern recognition
	2.2 Neural networks
	2.3 Network training
	2.4 Deep learning
	2.5 Important architectures in deep learning
	2.6 Advanced deep learning concepts

	3 Results
	3.1 Image detection and recognition
	3.2 Image segmentation
	3.3 Image registration
	3.4 Computer-aided diagnosis
	3.5 Physical simulation
	3.6 Image reconstruction

	4 Discussion
	5 Conclusion
	Acknowledgements
	References


