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Purpose: Dynamic contrast- enhanced (DCE) - MRI with Patlak model analysis is 
increasingly used to quantify low- level blood- brain barrier (BBB) leakage in studies 
of pathophysiology. We aimed to investigate systematic errors due to physiological, 
experimental, and modeling factors influencing quantification of the permeability- 
surface area product PS and blood plasma volume vp, and to propose modifications 
to reduce the errors so that subtle differences in BBB permeability can be accurately 
measured.
Methods: Simulations were performed to predict the effects of potential sources 
of systematic error on conventional PS and vp quantification: restricted BBB water 
exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B+

1
 

error. The impact of targeted modifications to the acquisition and processing were 
evaluated, including: assumption of fast versus no BBB water exchange, bolus ver-
sus slow injection of contrast agent, exclusion of early data from model fitting and 
B

+

1
 correction. The optimal protocol was applied in a cohort of recent mild ischaemic 

stroke patients.
Results: Simulation results demonstrated substantial systematic errors due to the 
factors investigated (absolute PS error ≤ 4.48 × 10−4 min−1). However, these were 
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1 |  INTRODUCTION

Dynamic contrast- enhanced (DCE- ) MRI is a frequently used 
research technique in assessing breakdown of the blood- brain 
barrier (BBB) in neurological diseases, including dementias, 
multiple sclerosis, tumors, and stroke.1 By measuring signal 
changes following intravenous injection of a gadolinium- 
based contrast agent (GBCA), DCE- MRI provides quantita-
tive measurements of GBCA leakage from the brain’s blood 
vessels into the interstitial space as the permeability- surface 
area product PS, together with other physiological properties 
including the blood plasma volume fraction vp. DCE- MRI 
has long been applied to investigate tissues where vascu-
lar leakage rates are high, such as high- grade brain tumors. 
However, the technique is now increasingly used for research 
into conditions such as cerebral small vessel disease (SVD),2 
Alzheimer disease (AD),3,4 multiple sclerosis,5 and aging,6 
where BBB pathology is considered to be significant but the 
degree of GBCA leakage is nevertheless low.

Despite increasing application of DCE- MRI in this set-
ting, the subtle nature of the leakage and technical limita-
tions of current MRI technology limit the precision and 
accuracy of BBB leakage estimation. High variability in PS 
measurements mean that large sample sizes are required to 
detect biological effects, while large inter- site variability hin-
ders multi- center studies and meta- analyses. Improvements 
in accuracy and precision, therefore, would enable clinical 
associations, disease progression, and treatment effects to 
be established more reliably and efficiently. The significant 
impacts of noise, signal drift, and pharmacokinetic model 
selection have been previously investigated as summarized 
in recent reviews, together with recommendations for image 
acquisition and analysis.7,8 For example, there is consensus 
that pharmacokinetic analysis using the Patlak approach is 
optimal in this regime; previous simulation studies show that 
its two key assumptions (high cerebral blood flow relative 
to the BBB leakage rate and negligible backflux of GBCA) 
are typically met and that good model fits are obtained with 
minimum free parameters.9- 11

However, previous reviews have also identified other fac-
tors with potential to confound quantification (regardless of 
the model used to predict GBCA distribution) that have not 
been quantified in this context. For example, it is standard 
practice in DCE- MRI studies of neurodegenerative diseases 
to model longitudinal relaxation in the fast water exchange 
limit (FXL). This assumption, which requires the differences 
in longitudinal relaxation rates between the tissue compart-
ments to be much smaller than the inter- compartmental water 
exchange rates,12,13 might not be valid for subtle GBCA BBB 
leakage, particularly during and immediately following injec-
tion when the vascular longitudinal relaxation rate is high. 
Therefore, assuming relaxation rates for vascular and extra-
vascular compartments are distinct may provide more accu-
rate estimates of leakage rates. It is also standard practice to 
use a bolus injection of GBCA, but although fast injection 
has benefits over constant infusion,14 the difficulty of resolv-
ing rapid first- pass changes in vascular and tissue GBCA 
concentrations may introduce additional errors. As a conse-
quence of these and other sources of error, and of divergent 
approaches to study design, image acquisition, and data anal-
ysis, reported values of PS (or, equivalently here, the volume 
transfer constant KTrans) and findings in relation to pathology 
vary widely between studies and research sites,7 limiting the 
adoption of these parameters as surrogate biomarkers of BBB 
integrity.

In this work, we quantify the impact of experimental and 
physiological effects on measurements of subtle BBB leakage 
using a Monte- Carlo simulation approach. We hypothesized 
that BBB water exchange, cerebral blood flow, arterial input 
function (AIF) delay, flip angle (FA) mis- calibration, and B+

1
 

inhomogeneity would all impact the accuracy of PS and vp 
estimation in the slow- leakage regime. We further evaluated 
modifications to the DCE- MRI acquisition and analysis pipe-
lines hypothesized to attenuate these effects, specifically: (i) 
bolus injection versus slow GBCA injection, (ii) inclusion 
versus exclusion of first- pass tissue data from the model fit-
ting, (iii) fitting data under the FXL versus no exchange limit 
(NXL; equivalent to the slow exchange limit SXL) assumption 

reduced (≤0.56 × 10−4 min−1) by applying modifications to the acquisition and pro-
cessing pipeline. Processing modifications also had substantial effects on in- vivo 
normal- appearing white matter PS estimation (absolute change ≤ 0.45 × 10−4 min−1).
Conclusion: Measuring subtle BBB leakage with DCE- MRI presents unique chal-
lenges and is affected by several confounds that should be considered when acquiring 
or interpreting such data. The evaluated modifications should improve accuracy in 
studies of neurodegenerative diseases involving subtle BBB breakdown.

K E Y W O R D S

blood- brain barrier, DCE- MRI, dementia, gadolinium, small vessel disease
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for exchange across the BBB, and (iv) B+
1

 correction. The im-
pacts of processing modifications were also evaluated in- vivo 
in a cohort of mild stroke patients with varying degrees of 
SVD severity, with PS and vp estimated in normal- appearing 
white matter (NAWM), subcortical gray matter (scGM), and 
white matter hyperintensities (WMH). We provide an open- 
source MATLAB application with graphical user interface so 
that measurement accuracy and precision can be estimated 
for arbitrary DCE- MRI protocols and modeled physiology. 
The implications of our findings for planning future studies 
and for interpreting results are discussed.

2 |  METHODS

2.1 | Simulations

DCE- MRI time series were simulated using publically ac-
cessible scripts (https://doi.org/10.7488/ds/2997) written in- 
house using Matlab (Mathworks, Natick MA, USA). Except 
where specified, the white matter tissue physiological and 
MR parameters used to simulate data are provided in Table 
1. Spoiled gradient echo (SPGR) time series were simulated 
using the in- vivo protocol described in Section 2.2.1 (rep-
etition time/echo time [TR/TE] = 3.4 ms/1.7 ms, FA = 15°, 
3 pre-  and 29 post- injection acquisitions with total duration 
1268 s). The simulated protocol follows recent consensus 
recommendations for measurement of subtle BBB leakage.8

2.1.1 | Pre- contrast T1 measurement

T1 measurement using the variable FA (VFA) method (TR 
= 5.4 ms, FA = 2°, 5°, 12°) was simulated by generating 
synthetic signals including additive Gaussian noise, with 

variance adjusted to achieve a test- retest T1 error comparable 
to that reported in the literature for 3T MRI (0.7%).15 The 
simulated signal was fitted using a non- linear least squares 
minimization approach to obtain the measured T1.

2.1.2 | Simulated DCE- MRI signal- 
time courses

DCE- MRI simulations were performed using two synthetic 
AIFs corresponding to bolus injection and slow injection 
over 2 min (Figure 1). A bolus AIF was generated using a 
population average function following a similar approach 
to previous studies,9,10 while a population average slow- 
injection AIF was constructed using patient measurements, 
as described in Section 2.2. Full details are provided in the 
Supporting Information. A venous vascular input function 
(VIF), which is frequently used for modeling in- vivo data, 
was obtained by time- shifting the AIF by 6 s.16,17

First, the simulated high- temporal- resolution AIF was 
convolved with the impulse response function for the 
2- compartment exchange Model (2CXM) to generate tis-
sue, capillary plasma, and EES concentration curves as 
described previously.5,9,10 This model is defined by four 
parameters: PS, EES volume fraction ve, blood plasma vol-
ume fraction vp, and blood plasma flow Fp. MRI signal was 
calculated for steady- state SPGR acquisition; BBB water 
exchange effects were modeled using the 2- site- 1- exchange 
model (2S1X).18,19

Second, signal- time courses were sampled at the required 
temporal resolution (Δt = 39.6 s) and random Gaussian noise 
added to achieve a temporal signal- to- fluctuation- noise- 
ratio (SFNR) of 230 to match the average measured in- vivo 
value. SFNR was calculated as the ratio of the baseline pre- 
contrast signal to the root mean square of the residuals for the 

T A B L E  1  Parameters used to generate DCE- MRI simulations

Parameter Symbol Value Source

Haematocrit Hct 0.42 mean over clinical cohort

EES volume fraction ve 0.2 Ref. 45

Native T1 at 3T (blood/NAWM) (s) T10 1.90/0.92 Ref. 27

BBB water exchange rate in NAWM (s−1) kbe 2.75 Ref. 18

T1 relaxivity of contrast agent (gadobutrol) at 3T 
(mM−1 s−1)

r1 5.0 Ref. 22

Plasma flow in NAWM, equal to CBF(1 − Hct) 
(mL 100 g−1 min−1)

Fp 11 Ref. 24

Signal- to- fluctuation- noise ratio SFNR 230 in- vivo data

AIF- to- VIFa  delay (s) - +6 Refs. 16,17

Plasma volume fraction in NAWM vp 0.015 Ref. 24

Abbreviation: EES, extravascular extracellular space.
aVIF measured in a draining vein.

https://doi.org/10.7488/ds/2997
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post- contrast average NAWM signal after fitting to a second 
order polynomial.20

2.1.3 | Simulated measurement of PS and vp

VIF and tissue concentrations were estimated from the simu-
lated MRI signal and T10, assuming the FXL as per stand-
ard practice in this application.10 GBCA concentration was 
estimated analytically using the equation for the SPGR sig-
nal21 and assuming linear dependence of 1/T1 on the con-
centration (r1 = 5.0 mM−1 s−1).22 Concentration in blood 
plasma cp was determined from the blood concentration cb 
as cp = cb∕ (1 − Hct), where Hct is the hematocrit. Finally, 
the Patlak model23 was fit to tissue concentration- time curves 
using an unconstrained multiple linear regression approach8 
to yield estimated vp and PS.

PS and vp were also estimated assuming the NXL for water 
exchange across the BBB. A forward model was defined to 
predict signal enhancement for a given PS and vp. Pre- contrast 
compartmental T10 was calculated assuming the FXL as de-
scribed previously,8 since the rate of water exchange across 
the BBB is likely to be much greater than the corresponding 
difference in compartmental R1.

12,13 GBCA concentrations in 
the capillary and EES compartments were predicted using the 

Patlak model, and the corresponding MRI signals were calcu-
lated assuming two distinct well- mixed compartments, that is, 
vascular and extravascular (the combined EES and intracel-
lular compartments) spaces. The two compartmental signals 
were combined, weighted by their volume fractions, to predict 
an overall tissue signal. PS and vp were adjusted to minimize 
the sum- of- square differences between predicted and “mea-
sured” enhancements using the Matlab lsqcurvefit function.

All simulations were repeated 1000 times to assess the 
influence of noise.

2.1.4 | In- silico experiments

Using the simulation framework described in the preceding 
sections, we assessed the accuracy of PS and vp measurements 
in white matter and their sensitivity to variations in physio-
logical and experimental parameters. First, we explored the 
impact of the BBB water exchange rate, using kbe = 2.75 s−1 
as a typical value for healthy NAWM, as well as half of and 
double this value, to cover potential variation due to age and 
subtle BBB pathology.18 Second, we determined the impact of 
cerebral blood plasma flow rate Fp, using the value 11 mL 100 
g−1 min−1 (equivalent to CBF = 19 mL 100 g−1 min−1) rep-
resenting NAWM in subjects with a similar age range to that 
of our clinical cohort,24 and lower values (8.25 and 5.5 mL 
100 g−1 min−1) to simulate conditions of chronic ischaemia. 
Third, the effect of AIF delay due to unknown contrast arrival 
time in the brain circulation (for example due to variations in 
injection timing, path length and cardiac output) was simu-
lated by repeating simulations with the AIF time- shifted by 
0- 12 s relative to the reference AIF. For each of these three ef-
fects, simulations were performed assuming bolus-  and slow- 
injection protocols, and with and without exclusion of the first 
3 data points from the start of the injection (corresponding to 
a period of 2 min) from the model fitting (specifically, data 
points were excluded for the purpose of calculating the sum 
of squares difference between the data and Patlak model pre-
diction, but were always included when calculating the model 
tissue concentration, which requires integration of the VIF).

Finally, we explored the impact of B+
1

 variation and un-
certainty by introducing a proportional error KFA in the trans-
mitted flip angle FAtrue for both the VFA T1 and DCE- MRI 
acquisitions, such that FAtrue = FAnom × KFA, where FAnom is 
the nominal FA. Simulations were performed assuming (i) 
zero FA error, (ii) equal FA error for tissue and the VIF and 
(iii) unequal FA error for tissue and the VIF. KFA values were 
obtained from measurements in our clinical cohort using the 
DESPOT1- HIFI technique, as outlined in section 2.2; values 
were first averaged over voxels within the VIF and NAWM 
masks and second over all patients. Simulated data were ana-
lyzed assuming the nominal and actual FAs to determine the 
effect of B+

1
 correction.

F I G U R E  1  Bolus injection AIF (generated with the modified 
Parker function) and slow injection AIF (based on patient- average 
measurements) used to generate simulated DCE- MRI data
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2.2 | In- vivo experiments

We used data from the first 50 patients with recent non- 
disabling ischaemic stroke recruited into an ongoing prospec-
tive longitudinal study of cerebral SVDs, as per published 
protocol.25 MRI was performed ≥1 month post- stroke to 
minimize acute effects of stroke on regional BBB integrity. 
The study was approved by the South- East Scotland Research 
Ethics Committee (REC 18/SS/0044) and informed written 
consent was obtained for each participant.

2.2.1 | MRI

Structural imaging, T1 measurement and DCE- MRI were ac-
quired using a MAGNETOM Prisma 3T clinical MRI scan-
ner (Siemens Healthcare GmbH, Erlangen, Germany) with 
a 32- channel receive head coil (acquisition parameters are 
provided as supplementary material of Ref. 25).

Pre- contrast T1 (T10) maps were measured with voxel-
wise correction for (and estimation of) FA error KFA. These 
were acquired using the DESPOT1- HIFI method26 (sagittal 
3D acquisition, acquisition matrix size 160 × 200 × 160, in- 
plane acceleration factor 2, 1.2- mm isotropic resolution), 
consisting of two inversion recovery SPGR sequences (TR 
= 1040,1940 ms, TE = 1.82 ms, TI = 600,1500 ms, FA 
= 5°) followed by three SPGR sequences with VFA (TR/
TE = 5.4/1.82 ms, FA = 2°,5°,12°). B+

1
- corrected T1 and 

KFA parametric maps were derived as described in Ref. 27, 
while uncorrected (ie, VFA) T1 was calculated by fitting 
SPGR images only.

DCE- MRI was acquired using a 3D sagittal T1w SPGR 
sequence with non- selective RF excitation and whole- brain 
coverage (TR/TE = 3.4/1.7 ms, FA = 15°, acquisition matrix 
size 120 × 96 × 96, 2- mm isotropic resolution). A total of 32 
volumes were acquired with a temporal resolution of 39.6 s 
over 21 min. A dose of 0.1 mmol/kg body weight gadobutrol 
(1 M Gadovist, Bayer AG, Leverkusen, Germany) was in-
jected intravenously using a power injector following acqui-
sition of three pre- contrast volumes, followed by a 20 mL 
saline flush; the flow rate was adjusted to deliver the required 
dose volume over a period of 110- 130 s.

Tissue masks representing NAWM, scGM, cerebrospinal 
fluid, WMHs (a main indicator of SVD), and stroke lesions 
were derived from structural images, as described in the 
Supporting Information.

2.2.2 | DCE- MRI processing

DCE- MRI images were spatially realigned (SPM 12 https://
www.fil.ion.ucl.ac.uk/spm/) using the brain- extracted (FSL- 
BET28) volumes. A mean pre- contrast image was obtained by 

averaging the first three volumes and was used as the target 
image for transforming and resampling the T10 maps and binary 
tissue masks into the DCE- MRI space using FSL FLIRT.29

As in previous studies of subtle BBB leakage and consis-
tent with recommendations,8,30 a venous VIF was used, with-
out scaling or transformation, in order to minimize partial 
volume, head motion and inflow effects that can affect AIF 
measurement. The VIF was obtained in each patient by man-
ually selecting five voxels from the superior sagittal sinus, 
preferentially selecting voxels with a high post- injection sig-
nal peak and smooth post- contrast signal decay, and obtaining 
the mean signal- time course of these voxels. This approach 
was previously found to have good interobserver reproduc-
ibility.31 The median signal at each time point was obtained 
from voxels within each tissue mask,10 in order to suppress 
the potential impact of skewed intensity distributions and 
outlier voxels. The signal enhancement was then calculated at 
each time point relative to the average pre- contrast signal, and 
concentration was estimated analytically based on the SPGR 
signal equation and assuming linear dependence of 1/T1 on 
the concentration. PS and vp were estimated as described in 
Section 2.1.3 using patient Hct measurements; where no Hct 
was available from the time of the scan, previous values were 
obtained from patient records.

2.3 | Statistics

The error in simulated PS and vp measurements was defined 
as the difference between the fitted and ground- truth values. 
The mean and SD of the errors over all runs of the simulation 
were recorded to indicate the predicted systematic bias and 
random error, respectively. We defined the sensitivity s of es-
timated PS or vp to variation in physiological parameters (ie, 
kbe, Fp and AIF delay) for a given acquisition and processing 
approach as the range of PS or vp estimates across all tested 
values of the confounding parameter, averaged over all simu-
lation runs and simulated values of PS or vp. s was calculated 
excluding the notional water exchange cases kbe = 0 and kbe 
= 1000 s−1. In- vivo measurements were summarized using 
descriptive statistics and differences were assessed using the 
paired samples t- test.

3 |  RESULTS

3.1 | Simulations

3.1.1 | Water exchange

To determine the impact of BBB water exchange on BBB 
leakage measurement, DCE- MRI data were simulated for 
white matter using the 2CXM and 2S1X models to simulate 

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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GBCA and water exchange, respectively (Figure 2). PS esti-
mates obtained using the Patlak approach with the standard 
FXL assumption are substantially overestimated. The sys-
tematic error is greater for bolus (3.02- 3.83 × 10−4 min−1, 
excluding the notional cases kbe = 0, 1000 s−1) versus slow 
injection (0.84- 1.15 × 10−4 min−1), dependent on other simu-
lation parameters including injection timing; excluding early 
data points from the fitting reduces the error in the bolus 
case (0.07- 0.60 × 10−4 min−1). Fitting data under the NXL 
assumption reduces the mean error for both bolus (−0.61 to 
−0.07 × 10−4 min−1) and slow (−0.56 to −0.12 × 10−4 min−1) 
injection protocols. Excluding early data points results in 
slightly lower sensitivity to the BBB water exchange rate for 

a bolus (PS sensitivity 0.12 × 10−4 min−1) vs. slow (0.22 × 
10−4 min−1) injection analyzed under the FXL assumption. 
kbe sensitivity was higher when data were analyzed under the 
NXL assumption (0.14 × 10−4 min−1 and 0.28 × 10−4 min−1 
for bolus and slow injection, respectively). Findings with re-
gard to vp were qualitatively similar (Supporting Information 
Figure S1, which is available online).

3.1.2 | Cerebral blood flow

To determine the additional impact of cerebral blood flow on 
BBB leakage measurement, DCE- MRI data were simulated 

F I G U R E  2  Simulation results showing the effect of variable BBB water exchange rate kbe on PS estimated using the standard Patlak analysis 
assuming fast water exchange (two left- most columns) and by fitting the same model under the assumption of no BBB water exchange (two right- 
most columns). Simulations are shown for both bolus and slow injection acquisitions, and with or without exclusion of early data points. Note that 
a wider y- axis range is used in A. Results are shown for typical (2.75 s−1), low (/2), and high (×2) values of kbe in NAWM, as well as notional 
values representing the no-  and fast- exchange limits (kbe = 0, 1000 s−1). Error bars show the mean ± SD errors for 1000 simulations; thus, the lines 
indicate systematic error (bias), while the error bars indicate random error due to noise. Source code to generate this figure is available to download 
at https://doi.org/10.7488/ds/2997

https://doi.org/10.7488/ds/2997


   | 7MANNING et Al.

as described above, assuming different blood plasma flow 
rates Fp but constant water exchange effects (kbe = 2.75 s−1) 
(Figure 3). PS measurements are sensitive to Fp but Fp sen-
sitivity is greater for bolus versus slow injection (0.39 vs. 
0.19 × 10−4 min−1 for NXL estimation). For both injection 
protocols, the sensitivity of the fitted parameters to Fp is vir-
tually eliminated by excluding the first three post- injection 
data points from the cost function (Fp sensitivity ≤0.03 × 
10−4 min−1 for NXL estimation). Findings were qualitatively 
similar using the standard FXL fitting approach and for vp 
estimation (Figure S2).

3.1.3 | AIF delay

To determine the additional impact of AIF delay due to 
variable contrast arrival time in the cerebral arteries, fur-
ther simulations were performed in the same manner, with 
a variable time delay (0, 4, 8, and 12 s) applied to the AIF 
(Figure  4). PS measurements are highly sensitive to AIF 
delay for a bolus injection (delay sensitivity 1.00 × 10−4 
min−1 for NXL estimation), but this is reduced when early 
data points are excluded (0.24 × 10−4 min−1). For slow in-
jection PS sensitivity is negligible, regardless of whether 

F I G U R E  3  Simulation results showing the effects of variable blood plasma flow rate Fp on estimated PS incorporating water exchange effects 
(kbe = 2.75 s−1). PS was estimated using the standard Patlak approach assuming fast water exchange (two left- most columns) and by fitting the 
same model under the assumption of no BBB water exchange (two right- most columns). Simulations are shown for both bolus and slow injection 
acquisitions, and with and without exclusion of early data points. Note that a wider y- axis range is used in A. Results are shown for typical (11 mL 
100 g−1 min−1), low (−25%), and very low (−50%) values of Fp in NAWM. Error bars show the mean ± SD estimates for 1000 simulations; thus, 
the lines indicate systematic error (bias) while the error bars indicate random error due to noise. Source code to generate this figure is available to 
download at https://doi.org/10.7488/ds/2997

https://doi.org/10.7488/ds/2997
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early data points are excluded. Findings were qualitatively 
similar using the standard FXL fitting approach and for vp 
estimation (Figure S3).

3.1.4 | B
+

1
 inhomogeneity

Further simulations were performed to determine the im-
pact of FA error KFA, assuming typical water exchange 
effects (kbe = 2.75 s−1) and with exclusion of early data 
points from the model fitting (Figure 5). The impact of 
spatially uniform FA error is very slight: PS estimates are 

very similar to those obtained with accurate FAs, with low 
systematic error in PS for bolus (−0.47 to −0.11 × 10−4 
min−1) and slow (−0.30 to −0.17 × 10−4 min−1) injection 
acquisitions with NXL fitting. For the more realistic case 
where B+

1
 inhomogeneity results in different KFA in blood 

and tissue, the systematic error is substantially greater for 
both bolus (−1.87 to −0.19 × 10−4 min−1) and slow (−1.90 
to −0.38 × 10−4 min−1) injections with NXL fitting. B+

1
 

correction results in PS estimates close, but not identical, 
to those obtained in the absence of B+

1
 error. Findings were 

qualitatively similar using the standard FXL fitting ap-
proach and for vp estimation (Figure S4).

F I G U R E  4  Simulation results showing the effects of AIF delay on estimated PS incorporating water exchange effects (kbe = 2.75 s−1). PS 
was estimated using the standard Patlak approach assuming fast water exchange (two left- most columns), and by fitting the same model under the 
assumption of no BBB water exchange (two right- most columns). Simulations are shown for both bolus and slow injection acquisitions, and with 
and without exclusion of early data points. Note that a wider y- axis range is used in A. Results are shown for AIF delays of 0, 4, 8, and 12 s. Error 
bars show the mean ± SD estimates for 1000 simulations; thus, the lines indicate systematic error (bias), while the error bars indicate random error 
due to noise. Source code to generate this figure is available to download at https://doi.org/10.7488/ds/2997

https://doi.org/10.7488/ds/2997
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3.2 | In- vivo measurements

After excluding one dataset due to severe motion artefact  
(N = 1), 49 patients (18 female, age 66.4 ± 9.6 y) had useable 
DCE- MRI, acquired using the slow- injection protocol 
described in Section 2.2.1.

We quantified the impact of processing modifications on 
our in- vivo results (Table 2, Figure 6). There is a substan-
tial negative change in mean PS (−0.447 × 10−4 min−1 in 
NAWM) and increase in vp (+0.17%) estimates when a NXL 
fitting approach is used in place of the standard FXL method. 
Excluding early data points from the fitting had less impact, 

resulting in slightly lower PS values (−0.04 × 10−4 min−1) 
and unchanged vp. B+

1
 correction had a substantial impact, 

increasing both PS (+0.201 × 10−4 min−1) and vp (+0.12%) 
estimates.

Using the processing approach predicted to yield greatest 
accuracy (NXL fitting, excluding early data points and B+

1
 

correction), PS values were greater than zero in all tissues 
(P < .0077). PS was higher in WMH (P < .0001) and scGM 
(P < .0001) vs. NAWM, and vp was also higher in WMH  
(P < .0001) and scGM (P < 10−5) vs. NAWM. There was no 
significant difference in PS between WMH and scGM (P = .8),  
although vp was higher in scGM vs. WMH (P < 10−5).

F I G U R E  5  Simulation results showing the effects of FA error on estimates of PS, incorporating water exchange effects (kbe = 2.75 s−1). PS 
was estimated using the standard Patlak approach assuming fast water exchange (two left- most columns), and by fitting the same model under the 
assumption of no BBB water exchange (two right- most columns); for clarity, results are only shown for analysis with exclusion of early data points. 
Simulations are shown for both bolus and slow injection acquisitions, and with and without B+

1
 correction. Note each row uses a different y- axis 

range. Error bars show the mean ± SD estimates for 1000 simulations; thus, the lines indicate systematic error (bias), while the error bars indicate 
random error due to noise. Source code to generate this figure is available to download at https://doi.org/10.7488/ds/2997

https://doi.org/10.7488/ds/2997
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4 |  DISCUSSION AND 
CONCLUSIONS

In this work, we quantified the impact of biological and in-
strumental factors on the accuracy of low- level BBB leakage 

measurements. Simulations predicted clinically significant 
systematic errors due to injection protocol, restricted water 
exchange, cerebral blood flow, AIF delay, and B+

1
 inhomoge-

neity. In some cases, the errors have comparable magnitude to 
the parameters being measured. Although the recommended 

T A B L E  2  Mean (SD) of regional PS and vp measured in our clinical cohort (N = 49) and estimated using (i) the standard Patlak approach 
under the assumption of fast water exchange, (ii) with the assumption of no BBB water exchange (NXL fit), (iii) NXL fit with exclusion of early 
data points from the cost function, and (iv) NXL fit with exclusion of early data points and B+

1
 correction of T1 measurement and DCE- MRI

Region

FXL fit NXL fit NXL fit w/exclusion
NXL fit w/ exclusion + B+

1
 

correction

PS (10−4 
min−1) vp (10−2)

PS (10−4 
min−1) vp (10−2)

PS (10−4 
min−1) vp (10−2)

PS (10−4 
min−1) vp (10−2)

NAWM 0.603 (0.576) 0.37 (0.12) 0.156 (0.563) 0.54 (0.14) 0.116 (0.565) 0.54 (0.15) 0.317 (0.798) 0.66 (0.18)

WMH 1.347 (0.997) 0.62 (0.22) 0.542 (0.841) 0.97 (0.33) 0.511 (0.862) 0.98 (0.33) 0.971 (1.309) 1.20 (0.41)

scGM 1.214 (0.820) 0.73 (0.21) 0.290 (0.696) 1.16 (0.25) 0.274 (0.726) 1.16 (0.26) 0.935 (1.209) 1.52 (0.35)

F I G U R E  6  PS (A- D) and vp (E- H) measured in our clinical cohort (N = 49) and estimated using (i) the standard Patlak approach under the 
assumption of fast water exchange (FXL fit), (ii) with the assumption of no BBB water exchange (NXL fit), (iii) NXL fit with exclusion of early 
data points from the cost function, and (iv) NXL fit with exclusion of early data points and B+

1
 correction of T1 measurement and DCE- MRI. 

Whiskers represent the maximum and minimum non- outlier data points. Outliers, shown as red crosses, are defined as >3rd quartile + (1.5 × 
interquartile range) or <1st quartile − (1.5 × interquartile range)
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Patlak analysis method was considered in this work, these 
confounds are likely to affect subtle BBB leakage measure-
ment using any standard model of GBCA distribution with a 
comparable MRI protocol. Modifications to the standard ac-
quisition and processing methods were shown to reduce the 
errors. In- vivo results in minor stroke patients with varying 
degree of SVD severity reflected previously reported tissue 
differences; however, parameter estimates changed signifi-
cantly when the evaluated processing modifications were 
applied.

4.1 | Causes and reduction of 
systematic errors

First, we showed that the assumption of fast BBB water ex-
change, ubiquitous in DCE- MRI studies of neurodegenera-
tive diseases,8 results in substantial bias in PS (up to 4.48 × 
10−4 min−1). This is caused by violation of the FXL assump-
tion, with consequent underestimation of GBCA concen-
tration (Figure S5). Since this effect is strongest during the 
early part of the time course, GBCA concentration appears 
to increase more rapidly (or decrease more slowly), leading 
to overestimation of PS. The importance of water exchange 
in contrast- enhanced MRI has long been known,32 but its im-
pact has not been widely recognised in the BBB literature. 
Cao et al. reported the effect of restricted water exchange 
on the GBCA transfer constant, although the impact on ac-
curacy was not presented.33 Our findings are qualitatively 
similar to those of Paudyal et al,12 who simulated measure-
ments of faster BBB leakage with the extended Tofts model. 
Larsson et al. reported a significant impact on cerebral per-
fusion values measured using the inversion- recovery SPGR 
sequence.34

We showed that predicted systematic errors are reduced 
for a bolus injection by excluding early post- injection data 
points from the model fit, where violation of the FXL is most 
pronounced. Bias is also substantially reduced by modeling 
the MRI signal in the NXL. However, PS estimates remain 
somewhat sensitive to the value of kbe, which is likely to be 
altered in neurodegenerative pathology.18 Variation in indi-
vidual AIF shape is also likely to affect the bias and requires 
further investigation. Other approaches could include: acqui-
sition protocols that facilitate simultaneous estimation of kbe 
and PS; independent measurement of kbe for use in the DCE- 
MRI signal model; reducing the GBCA dose (at the likely 
cost of reduced sensitivity to BBB leakage)35; and optimizing 
the acquisition protocol to reduce kbe sensitivity.32,36

Second, we simulated the impact of cerebral blood flow, 
which is commonly reduced in aging and neurovascular dis-
ease.37 Previous work has shown that excluding early post- 
injection time points improves the Patlak model fit, reducing 
blood flow effects.10,11 Our simulations results support this 

approach and, in the case of bolus injection, predict that large 
systematic PS errors and Fp- dependence would otherwise re-
sult. Slow- injection DCE- MRI is less sensitive to Fp, since 
the slower change in arterial GBCA concentration leads to 
similar arterial, capillary, and venous concentrations (Figure 
S6), but exclusion of early data points nevertheless reduces 
Fp sensitivity.

Third, we probed the effect of AIF delay, which can vary 
in- vivo due to multiple factors including injection timing, car-
diac output and path length from the injection site. For a bolus 
injection, a small delay significantly affects the estimated pa-
rameters and a significant error remains even when early data 
points are excluded, while slow injection of GBCA virtually 
eliminates the impact. The reason, illustrated in Figure S7, 
is that the area under the VIF, which approximately deter-
mines GBCA extravasation, is more accurately quantified for 
a slowly changing VIF. For the same reason, additional errors 
due to variation in bolus shape will likely also be reduced for 
a slow injection. Furthermore, the high peak concentrations 
induced by a bolus injection, which may cause T1 saturation 
and transverse dephasing, are avoided. This problem of VIF 
sampling can alternatively be addressed by acquiring data at 
higher temporal resolution— either during the first- pass38 or 
throughout the acquisition— in order to resolve the first- pass 
profile. However, a compromise must be struck between the 
temporal resolution, spatial resolution, anatomical coverage 
and CNR requirements of the application. In this work, we 
employed a protocol with whole- brain coverage and moder-
ate spatial and temporal resolutions in order to capture patho-
logical changes across multiple brain regions; whole- brain 
non- selective excitation has the additional benefit of reduc-
ing inflow artefact in the large vessels, which can affect VIF 
quantification. Spatial resolution should nevertheless be ad-
equate to resolve the VIF vessel and the anatomy of interest. 
A third solution is to substitute a population- averaged VIF 
during the first- pass period; however, this could lead to errors 
due to individual variation.

Fourth, we investigated the effect of B+
1

 error. Our results 
confirm that B+

1
 effects largely self- cancel for the SPGR se-

quence, as previously reported,39 provided that the FA error 
is the same for tissue and VIF. However, our in- vivo mea-
surements using a 3T MRI scanner revealed a 17% difference 
in average FA for NAWM and VIF. In this case, substantial 
additional errors in PS (around −40%) and vp were predicted. 
The reason is illustrated in Figure S8. Fortunately, B+

1
 correc-

tion was shown to virtually eliminate this measurement error.

4.2 | In- vivo findings

In our patient cohort, NXL fitting yielded PS estimates that 
were substantially closer to zero in all tissues compared with 
standard FXL fitting (0.60 vs. 0.16 × 10−4 min−1 in NAWM), 
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while vp estimates increased by approximately 50%. The in-
cremental effect of excluding early data points was small, as 
predicted by simulations for the case of a slow injection. B+

1
 

correction resulted in higher PS and vp, as predicted; how-
ever, final estimates remained lower for PS (0.32 vs. 0.60 × 
10−4 min−1 in NAWM) and higher for vp (0.66 vs. 0.38%) 
compared with standard FXL analysis without exclusion of 
early data points or B+

1
 correction. The wider PS distribution 

following B+
1

 correction may represent biological variation, 
since predicted B+

1
 errors (Figure 5) become more negative 

as PS increases and, therefore, would compress the apparent 
distribution without B+

1
 correction.

In- vivo data processed with the NXL assumption, exclu-
sion of early data points and B+

1
 correction suggested detect-

able BBB leakage in all three tissues. Leakage was greater 
in WMH and scGM compared with NAWM, but similar in 
WMH and scGM. This pattern of tissue differences confirms 
the findings of our earlier 1.5T DCE- MRI study in a similar 
patient cohort.10 However, PS estimates are lower in the pres-
ent 3T study (0.3 vs. 3.0 × 10−4 min−1 in NAWM). There are 
several possible reasons for this. Sham 1.5T DCE- MRI scans 
without contrast revealed a positive signal drift of approxi-
mately 0.08 % min−1, resulting in predicted overestimation 
of PS by around 3.0 × 10−4 min−1, while 3T signal drift was 
close to zero. In addition, 1.5T data were processed using 
the standard FXL approach, which would likely have resulted 
in further overestimation. The impact of B+

1
 inhomogeneity, 

which was not measured at 1.5T, use of different GBCAs and 
patient differences could also have contributed.

The greater BBB leakage rate measured in WMH versus 
NAWM in both studies is consistent with BBB dysfunction 
as a component of WMH pathophysiology, as seen histolog-
ically.40 However, findings from other SVD studies are var-
ied.8 PS is determined by capillary surface area as well as 
permeability41; thus, increased blood volume and potential 
differences in capillary width42 could contribute.

vp was also higher in WMH compared with NAWM, and 
higher still in scGM. This also confirms our 1.5T findings, 
however absolute values are somewhat higher in the pres-
ent study (0.7 vs. 0.6% in NAWM, 1.5 vs. 1.2% in scGM), 
presumably due to the factors discussed above. Both sets of 
values are lower than reference values obtained in individu-
als of similar age using 15O positron emission tomography.24 
This may reflect differences in the cohorts (patients with 
cerebrovascular disease versus healthy volunteers), resolu-
tion and tissue sampling (eroded NAWM masks vs. regions 
of interest).

4.3 | Implications

Our findings have significant implications for studies of 
subtle BBB permeability. Inter- site differences in reported 

PS measurements have comparable magnitude7 to the 
predicted systematic errors and might be partly caused 
by the experimental and biological aspects considered in 
this work, in addition to the previously described impact 
of scanner drift. Reported differences between and within 
patients also have a similar magnitude to the predicted sys-
tematic errors. For example, Zhang et al. compared SVD 
patients with controls, reporting a PS difference of ap-
proximately 0.5 × 10−4 min−1 43; Montagne et al. reported 
a difference of around 5 × 10−4 min−1 according to apoli-
poprotein E status3 in cognitively normal or early AD par-
ticipants; finally, Heye et al. reported a difference of 10−4 
min−1 between NAWM and WMH in patients with recent 
mild stroke.10 Since variation in BBB water exchange rate, 
cerebral blood flow, and other factors could potentially 
mimic or obscure differences in the actual PS, their impact 
should be estimated for specific MRI protocols and, where 
possible, reduced when designing studies, for example, 
using the source code provided by the authors.

Some general inferences can also be made. First, it is es-
sential to exclude first- pass data from the model cost func-
tion in the case of a bolus injection, in order to avoid large 
errors due to BBB water exchange, cerebral blood flow 
rate, and AIF delay. This is not a new recommendation11 
but implementation or otherwise is often not reported in 
the literature8 and our simulations reveal the high impact 
of omitting this measure. Exclusion is less essential in the 
case of slow injection but nevertheless reduces sensitivity 
to blood flow.

Second, the substantial systematic errors resulting from 
the standard FXL assumption can be reduced by modeling 
the MRI signal in the NXL, with the caveat that PS estimates 
remain somewhat sensitive to the AIF shape and to the water 
exchange rate.

Third, parameters measured using a bolus injection at 
low temporal resolution remain moderately sensitive to 
patient-  and protocol- dependent variation in AIF timing, 
for example due to cardiac output or injection start time. 
These errors can be eliminated via a slow injection ap-
proach. Similar errors are likely to result from variation in 
bolus shape and arteriovenous delay, which should also be 
reduced with a slow injection. A disadvantage of this ap-
proach is that the full GBCA dose is delivered later; thus, a 
faster injection rate could be more sensitive to GBCA leak-
age for shorter acquisitions than simulated here. Further 
research is needed before recommending an approach, in 
order to determine the inter- patient variation in VIF pro-
files, which also modulate the impact of water exchange.

Fourth, FA mapping substantially improves the accuracy 
of subtle BBB leakage. Failure to correct for variation in the 
transmitted FA results in substantial errors that vary spatially, 
could confound tissue comparisons, and that may be larger 
than those predicted here for the relatively homogeneous B+

1
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field of our dual- transmit 3T MRI system. B+
1

 shimming, 
where available, should also improve accuracy.

4.4 | Strengths and limitations

Strengths of our work include the use of a computational ap-
proach to determine the impact of factors that cannot be eas-
ily measured and controlled in- vivo. We propose remedies 
that were evaluated theoretically and demonstrated in- vivo. 
Our source code is made publically available for researchers 
to determine the impact of these effects in future studies. A 
limitation of our work is that simulation results were obtained 
for specific sets of parameters, and would be quantitatively 
different for other protocols and tissues; however, the proto-
col evaluated is representative of those reported in the litera-
ture and the supplied software permits alternative settings to 
be explored. All simulations are also limited by the forward 
model used to generate the signal, since knowledge of all un-
derlying biophysical properties is limited. For clarity, we did 
not include signal drift in the simulations, since this effect 
has been addressed previously9,10 and is scanner- dependent. 
AIF- VIF delay, but not dispersion, was simulated, since there 
is limited literature regarding the latter and previous work in-
dicates similar time courses16,17,44; dispersion will primarily 
affect the VIF during the period immediately after injection 
and is likely to affect quantification in a similar manner to 
variation in AIF timing (Figure 4). The impact should, there-
fore, be minimized by excluding early data points or using a 
slow contrast injection.

5 |  CONCLUSIONS

In conclusion, we investigated significant confounds of 
DCE- MRI subtle BBB leakage measurement and approaches 
to reduce their impact. Properties such as water exchange and 
blood flow rates, if correlated with pathology, could mimic 
or disguise differences in BBB leakage if not addressed. In- 
vivo results in patients with imaging markers of SVD were 
consistent with simulations and previous findings. Our work 
should permit improved measurement of BBB leakage in fu-
ture studies.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 Simulation results showing the effect of vari-
able BBB water exchange rate kbe on vp estimated using the 
standard Patlak analysis assuming fast water exchange (2 
left- most columns) and by fitting the same model under the 
assumption of no BBB water exchange (2 right- most col-
umns). Simulations are shown for both bolus and slow injec-
tion acquisitions, and with or without exclusion of early data 
points. Note that a shifted y- axis range is used in A. Results 
are shown for typical (2.75 s−1), low (/2) and high (×2) values 
of kbe in NAWM, as well as notional values representing the 
fast-  and no- exchange limits (kbe = 0, 1000 s−1). Error bars 
show the mean ± standard deviation errors for 1000 simula-
tions, thus the lines indicate systematic error (bias) while the 
error bars indicate random error due to noise
FIGURE S2 Simulation results showing the effects of vari-
able blood plasma flow rate Fp on estimated vp, incorporat-
ing water exchange effects (kbe = 2.75 s−1). vp was estimated 
using the standard Patlak approach assuming fast water ex-
change (2 left- most columns) and by fitting the same model 
under the assumption of no BBB water exchange (2 right- 
most columns). Simulations are shown for both bolus and 
slow injection acquisitions, and with and without exclusion 
of early data points. Note that a wider y- axis range is used in 
A. Results are shown for typical (11 ml 100 g−1 min−1), low 
(−25%) and very low (−50%) values of Fp in NAWM. Error 
bars show the mean ± standard deviation estimates for 1000 
simulations, thus the lines indicate systematic error (bias) 
while the error bars indicate random error due to noise
FIGURE S3 Simulation results showing the effects of AIF 
delay on estimated vp, incorporating water exchange effects 
(kbe = 2.75 s−1). vp was estimated using the standard Patlak 
approach assuming fast water exchange (2 left- most col-
umns), and by fitting the same model under the assumption of 
no BBB water exchange (2 right- most columns). Simulations 
are shown for both bolus and slow injection acquisitions, and 
with and without exclusion of early data points. Note that a 
shifted y- axis range is used in A. Results are shown for AIF 
delays of 0, 4, 8 and 12 s. Error bars show the mean ± stan-
dard deviation estimates for 1000 simulations, thus the lines 
indicate systematic error (bias) while the error bars indicate 
random error due to noise
FIGURE S4 Simulation results showing the effects of flip 
angle error on estimates of vp, incorporating water exchange 

effects (kbe = 2.75 s−1). vp was estimated using the standard 
Patlak approach assuming fast water exchange (2 left- most 
columns), and by fitting the same model under the assump-
tion of no BBB water exchange (2 right- most columns); for 
clarity, results are only shown for analysis with exclusion of 
early data points. Simulations are shown for both bolus and 
slow injection acquisitions, and with and without B1

+ correc-
tion. Note each row uses a different y- axis range. Error bars 
show the mean ± standard deviation estimates for 1000 sim-
ulations, thus the lines indicate systematic error (bias) while 
the error bars indicate random error due to noise
FIGURE S5 Tissue concentrations (Ct) when measuring PS 
and vp using routine Patlak analysis assuming the fast ex-
change limit (left column) or the slow water exchange Patlak 
analysis (right column), simulated for both bolus (top row) 
and slow (bottom row) injection of contrast agent. The results 
demonstrate that, when fitting according to the assumption 
of fast compartmental water exchange,tissue concentration Ct 
is consistently underestimated for both bolus and slow injec-
tions, predominantly during the early part of the time course. 
When fitting the enhancement directly under the assumption 
of slow BBB water exchange, Ct is only slightly overesti-
mated and more accurate PS estimation is obtained. Synthetic 
data were generated as described in the Methods, using the 
2CXM model for GBCA exchange, the 2S1X model for water 
exchange and with the following parameters: PS = 2.96 × 
10−4 min−1, vp = 0.015, ve = 0.20, kbe = 2.75 s−1, Fp = 11 ml 
100 g−1 min−1. Error bars show the mean ± standard devia-
tion concentration estimates for 1000 simulations
FIGURE S6 Simulated blood plasma GBCA concentrations 
corresponding to the arterial input function (AIF), vascular 
input function (VIF) and tissue capilary blood plasma (ccp). 
Crosses represent MRI measurements of GBCA blood plasma 
concentration at limited temporal resolution based on the VIF. 
Data are shown for normal (left column) and reduced (right 
column) blood plasma flow, and for bolus (top row) and slow 
(bottom row) injection of GBCA. The data demonstrate that 
Fp modulates the difference between arterial and capillary 
GBCA concentrations, which results in erroneous estimation 
of the vascular contribution to tissue GBCA concentration. 
The discrepancy is greatest for a bolus injection and during 
the first- pass, therefore, accuracy is improved by excluding 
early data points from the cost function during model fitting 
and by injecting GBCA slowly. Synthetic data were gener-
ated as described in the Methods, using the 2CXM model 
for GBCA exchange and with the following parameters: PS 
= 2.96 × 10−4 min−1, vp = 0.015, ve = 0.20, Fp = 11 ml 100 
g−1 min−1. For clarity, data were simulated without noise. VIF 
dispersion was not simulated since there is limited knowledge 
regarding AIF- VIF dispersion and previous literature suggests 
closely similar time courses for the two functions
FIGURE S7 Blood plasma GBCA concentrations corre-
sponding to the arterial input function (AIF) and vascular 
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input function (VIF). Crosses represent VIF concentrations 
measured at finite temporal resolution (cp). Data are simu-
lated assuming 4 (left column) and 12 s (right column) AIF 
delay, and for bolus (top row) and slow (bottom row) injec-
tions of contrast agent. For a 4 s delay, the VIF is sampled 
close to the peak and the area- under- curve (AUC) is over-
estimated, resulting in inaccurate pharmacokinetic parameter 
estimates. For a 12 s delay, the peak is missed and the AUC 
is underestimated. Since the extravascular term of the Patlak 
model requires the AUC, a delay- dependent error in the fitted 
pharmacokinetc parameters result. For slow injection of con-
trast agent, the VIF and its AUC are faithfully represented at 
the acquired temporal resolution and the effect of delay time 
is small. Synthetic data were generated as described in the 
Methods. For clarity, data were simulated without noise
FIGURE S8 Blood plasma GBCA concentrations (cp, top 
row; mean over 1000 simulations), tissue GBCA concentra-
tion (Ct, middle row), and relative error in both concentrations 
(bottom row). Data are simulated without flip angle error (left 
column), for equal flip angle error (KFA) in VIF and tissue 
(middle column), and for different flip angle errors in VIF and 
tissue (right column). For no flip angle error, VIF and tissue 

GBCA concentrations are estimated accurately. Equal flip 
angle errors in VIF and tissue results in approximately equal 
proportional errors in both cp and Ct, thus parameters derived 
from fitting the Patlak model are almost unchanged. However, 
unequal flip angle errors result in different errors in VIF and 
tissue GBCA concentration, resulting in incorrect pharmaco-
kinetic parameter estimates. Synthetic data were generated as 
described in the Methods, using the 2CXM model for GBCA 
exchange and with the following parameters: PS = 2.96 × 
10−4 min−1, vp = 0.015, ve = 0.20, Fp = 11 ml 100 g−1 min−1. 
For clarity, simulations were performed for a slow- injection of 
GBCA and assuming fast water exchange behaviour, however 
findings with respect to flip angle error are similar for a bolus 
injection and for restricted water exchange
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