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a b s t r a c t 

Transformers have dominated the field of natural language processing and have recently made an impact in 

the area of computer vision. In the field of medical image analysis, transformers have also been successfully 

used in to full-stack clinical applications, including image synthesis/reconstruction, registration, segmentation, 

detection, and diagnosis. This paper aimed to promote awareness of the applications of transformers in medical 

image analysis. Specifically, we first provided an overview of the core concepts of the attention mechanism built 

into transformers and other basic components. Second, we reviewed various transformer architectures tailored 

for medical image applications and discuss their limitations. Within this review, we investigated key challenges 

including the use of transformers in different learning paradigms, improving model efficiency, and coupling with 

other techniques. We hope this review would provide a comprehensive picture of transformers to readers with 

an interest in medical image analysis. 
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. Introduction 

Transformers [1] have dominated the field of natural language pro-

essing (NLP), with applications in areas including speech recognition

2] , synthesis [3] , text to speech translation [4] , and natural language

eneration [5] . As an instance of deep learning architectures, the first

ransformer was introduced to handle sequential inference tasks in NLP.

hereas recurrent neural networks [6] ( e.g. , long short-term memory

etwork [7] ) explicitly use a sequence of inference processes, trans-

ormers capture long-term dependencies of sequential data with stacked

elf-attention layers. Thus, transformers are both efficient, as they solve

 sequential learning problem in one-shot, and effective, owing to the

tacking of very deep models. Several transformer architectures trained

n large-scale architectures have become popular for solving NLP tasks;

hese include Bidirectional Encoder Representations from Transformers,

ERT [8] and GPT-3 [9-10] , to name just two. 

Convolutional neural networks (CNNs) and their variants have

chieved state-of-the-art (SOTA) performance in several computer vi-
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ion (CV) tasks [11] , partially owing to their progressively enlarged re-

eptive fields that can learn hierarchies of structured image represen-

ations as semantics. Capturing vision semantics in images is usually

egarded to be the core idea enabling building of successful networks in

V [12] . However, the long-term dependencies within images, such as

he non-local correlation of objects in the image, are neglected in CNNs.

nspired by the aforementioned success of transformers in NLP, Dosovit-

kiy et al. [13] developed the vision transformer (ViT) by formulating

mage classification as a sequence prediction task for the image patch

region) sequence, thereby capturing long-term dependencies within the

nput image. ViT and its derived instances have achieved SOTA perfor-

ance on several benchmark datasets. Transformers have become very

opular across a wide spectrum of CV tasks, including image classifi-

ation [13] , detection [14] , segmentation [15] , generation [16] , and

aptioning [17] . Furthermore, transformers have an important role in

ideo-based applications [18] . 

Recently, transformers have also cross-pollinated the field of medical

mage analysis, where they are used for disease diagnosis [19–21] and
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Figure 1. The development of transformers in medical image analysis. Selected methods are displayed relating to classification, detection, segmentation, and 

synthesis applications. 
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ther clinical purposes. For instance, the work described in [22-23] used

ransformers to distinguish COVID-19 from other types of pneumonia

sing computed tomography (CT) or X-ray images, meeting the urgent

eed to treat COVID-19 patients fast and effectively. Transformers have

lso been successfully applied to image segmentation [24] , detection

25] , and synthesis [26] , achieving SOTA results. Figure 1 displays the

hronological adaptation of transformers to different medical image ap-

lications, which will be further discussed in Section 3 . 

Although many studies have been devoted to customizing transform-

rs for medical image analysis tasks, this customization raised new chal-

enges that remain unsolved. To encourage and facilitate the develop-

ent of transformer-based applications in medical image analysis, we

xtensively review more than 170 existing transformer-based methods

n the field, providing solutions for medical applications, and show-

ng how transformers have been adopted in various clinical settings.

oreover, we present in-depth discussions on the design of transformer-

ased methods to solve complex real-world tasks, including weakly-

upervised/multi-task/multi-modal learning paradigms. This paper also

ncludes comparisons between transformers and CNNs and discusses

ew ways of improving the efficiency and interpretation of transformer

etworks. 

The remainder of the paper is organized as follows. Section 2 intro-

uces the preliminaries of transformers and their development in vision.

ection 3 reviews recent applications of transformers in medical image

nalysis, and Section 4 discusses the potential future directions of trans-

ormers. Section 5 concludes the paper. 

. Transformers 

.1. Preliminaries 

A typical transformer leverages the attention mechanism in neural

etworks. Hence, we start by introducing the core principle of the at-

ention mechanism, followed by a detailed description of how the trans-

ormer works. 

.1.1. Attention mechanism 

For information exploration, human beings usually leverage their

attention mechanism ” to filter out irrelevant information while focus-

ng on the meaningful parts of the data encountered in daily life. Inspired

y this observation, researchers have designed attention mechanisms for

eep learning that sift through homogeneous data while paying attention

o the most significant components or elements. 

Bahdanau attention. An attention mechanism was initially pro-

osed in [27] for a language translation task, namely Bahdanau atten-

ion. This attention mechanism is calculated as the weighted sum of all

nnotations ( i.e. , the results of each input generated by the encoder) and

he previous decoder. 

.1.2. Attention mechanism in computer vision 

Similar concepts have been developed in the field of CV. For exam-

le, Hu et al. [28] introduced a novel attention mechanism, i.e., Squeeze-
60 
nd-Excitation , to execute feature re-calibration , in which informative fea-

ures for a particular visual task are emphasized, and the remaining fea-

ures are regarded as less important. 

Self-attention. In [1] , the attention mechanism was re-defined as a

unction working with queries, keys, and values derived from the input

ectors of the module, in contrast to Bahdanau attention. The output is

efined as a weighted sum of values, where the weight of each value is

alculated as the attention between queries and keys. 

The self-attention operation is usually performed in matrix form

o accelerate calculation in parallel. To briefly illustrate the con-

ept of self-attention, we first describe it in an element-wise

orm. 

For each input 𝑥 𝑖 ∈ ℝ 

𝑐 , 𝑖 = 1 , .., 𝑛 , the corresponding query 𝑞 𝑖 ∈ ℝ 

𝑑 
𝑞 
,

ey 𝑘 𝑖 ∈ ℝ 

𝑑 
𝑘 
, and value 𝑣 𝑖 ∈ ℝ 

𝑑 
𝑣 

vectors are generated through the param-

ters 𝑊 

𝑞 , 𝑊 

𝑘 , and 𝑊 

𝑣 , respectively. 𝑑 𝑞 , 𝑑 𝑘 , 𝑑 𝑣 are the sizes of 𝑞 𝑖 , 𝑘 𝑖 , 𝑣 𝑖
nd also the number of features that are learned from 𝑥 𝑖 . 

 𝑖 = 𝑥 𝑖 ×𝑊 

𝑞 , 𝑊 

𝑞 ∈ ℝ 

𝑐×𝑑 𝑞 , 

 𝑖 = 𝑥 𝑖 ×𝑊 

𝑘 , 𝑊 

𝑘 ∈ ℝ 

𝑐×𝑑 𝑘 , 

 𝑖 = 𝑥 𝑖 ×𝑊 

𝑣 , 𝑊 

𝑣 ∈ ℝ 

𝑐×𝑑 𝑣 , 

 𝑞 = 𝑑 𝑘 . 

(1) 

The output is also a probability calculated as the weighted sum of

he calculated weighting values: 

𝑖𝑗 = Sof tmax 

( 

𝛼′
𝑖𝑗 √
𝑑 𝑘 

) 

= 

𝑒𝑥𝑝 

( 

𝛼′
𝑖𝑗 √
𝑑 𝑘 

) 

∑
𝑗 𝑒𝑥𝑝 

( 

𝛼′
𝑖𝑗 √
𝑑 𝑘 

) 

, (2)

′
𝑖𝑗 
= 𝑞 𝑖 × 𝑘 T 𝑗 , (3)

here 𝛼′
𝑖𝑗 

measures the contribution of the 𝑗 𝑡ℎ element of the input to the

 

𝑡ℎ element of the output. Through this operation, 𝛼′
𝑖𝑗 

can be regarded

s the attention assigned to the element 𝑣 𝑖 . Thereby the final output

ttentions can be computed as a weighted sum of all values as follows: 

 𝑖 = 

∑
𝑗 

𝛼𝑖𝑗 × 𝑣 𝑗 . (4)

The element-wise self-attention can be feasibly extended to matri-

es. In most cases, the query 𝑞 𝑖 , key 𝑘 𝑖 and value 𝑣 𝑖 for each input

 𝑖 are generated using parallel matrix computation. 𝑥 𝑖 , 𝑞 𝑖 , 𝑘 𝑖 , 𝑣 𝑖 can be

tacked together to matrices, respectively. Let 𝑋 ∈ ℝ 

𝑠 ×𝑐 denote the in-

ut matrix, 𝑄 denote the query matrix, 𝐾 denote the key matrix, and

 denote the value matrix, where 𝑠 is the number of the samples and

ach matrix is consisted of the elements, i.e. , 𝑋 = [ 𝑥 1 ; 𝑥 2 ; ⋯ ; 𝑥 𝑠 ] 𝑇 . Sim-

larly, we compute the attention matrix 𝐴 and output matrix 𝑍 as

ollows: 

 = Sof tmax 

( 

𝑄 ×𝐾 

T √
𝑑 𝑘 

) 

∈ ℝ 

𝑠 ×𝑠 , (5) 

 = 𝐴 × 𝑉 ∈ ℝ 

𝑠 ×𝑑 𝑣 . (6) 



K. He, C. Gan, Z. Li et al. Intelligent Medicine 3 (2023) 59–78 

Figure 2. A brief illustration of a self-attention mechanism. 
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Multi-head self-attention. It was shown in [1] that applying mul-

iple self-attentions to the same input could better capture hierarchical

eatures. These self-attention layers work similarly to multiple kernels in

onvolution layers. Given ℎ self-attentions (heads), the module outputs

he final result by concatenating the calculated attentions: 

 𝑖 = At t ent ion ( 𝑄 ×𝑊 

𝑄 

𝑖 
, 𝐾 ×𝑊 

𝐾 
𝑖 
, 𝑉 ×𝑊 

𝑉 
𝑖 
) , (7) 

ultiHead ( 𝑄, 𝐾, 𝑉 ) = Concat ( 𝑍 1 , ⋯ , 𝑍 ℎ ) 𝑊 

𝑂 , (8) 

here 𝑊 

𝑄 

𝑖 
, 𝑊 

𝐽 
𝑖 

, 𝑊 

𝑉 
𝑖 

denote linear projection matrices that map ma-

rices 𝑄, 𝐾, 𝑉 into different subspaces, respectively. 𝑊 

𝑂 is an output

rojection matrix that concatenates self-attention outputs of all atten-

ion heads ( Figure 2 ). 

.2. Architecture 

In [1] , the authors proposed a typical transformer network with

n encoder–decoder structure. The encoder maps an input sequence

 𝑥 1 , … , 𝑥 𝑛 } to an output sequence { 𝑧 1 , ⋯ , 𝑧 𝑛 } of the same length. The

ecoder generates the output { 𝑦 1 , ⋯ , 𝑦 𝑚 } from the encoded representa-

ion 𝑧 in an element-wise manner and takes the previous output as an

dditional input. A typical transformer architecture is shown in Figure 3

nd described below. 

.2.1. Encoder 

The encoder in a typical transformer has 𝑛 = 6 stacked blocks con-

isting of two types of layers, i.e. , the multi-head attention layer and the

eed-forward layer. Residual connections and layer normalization lay-

rs are combined with the aforementioned layers. Concretely, in each

lock, the multi-head attention is first calculated, followed by a layer-

ise normalization, calculating the sum of the input and output of the

ulti-head attention. This is followed by a feed-forward layer, then a

ayer-wise normalization of the sum of the feed-forward layer’s input

nd output. 

.2.2. Decoder 

The decoder also has 𝑛 = 6 blocks, similar to the encoder, with some

inor modifications. Specifically, an additional self-attention layer is

nserted on top of the encoded output. Masking is employed in the first

elf-attention layer to block subsequent contributions to the state of the

revious position, as the prediction is based on a known state. A linear

ayer and a Softmax layer are inserted after the output of the decoder to

enerate the final output. 
61 
.3. Vision transformers 

The success of transformers in NLP propagated to the CV research

ommunity, where several efforts have been made to adapt transform-

rs to vision tasks. Transformer-based models in vision have been de-

eloped at an unprecedented pace; the most representative such models

re detection transformer (DETR) [14] , ViT [13] , data-efficient image

ransformer (DeiT) [30] , and Swin-Transformer [31] . 

DETR. DETR, proposed by Carion et al. [14] , was the first applica-

ion of transformers to a CV task, specifically the task of object detection.

nlike conventional object detection methods that involve hand-crafted

rocesses, DETR is an end-to-end detection model that uses a trans-

ormer encoder to model the relation between image features extracted

y a CNN backbone, a transformer decoder to generate object queries,

nd a feed-forward network to assign labels and bound the boxes around

he objects. 

ViT. Following DETR, Dosovitskiy et al. [13] proposed the ViT, as

hown in Figure 4 . ViT is an image classification model that adopts the

asic architecture of the conventional transformer. In ViT, the input im-

ge is converted to a series of patches, each coupled with a positional

ncoding method that encodes the spatial positions of each patch to pro-

ide spatial information. The patches, along with a class token, are then

ed into the transformer to calculate the MHSA and output the learned

mbeddings of patches. The state of the class token from the output

f the ViT serves as the image representation. Last, a multi-layer per-

eptron (MLP) is used to classify the learned image representation. In

ddition to raw images, feature maps from CNNs can be fed into a ViT

or relational mapping. 

DeiT. In order to solve the problem of large-scale training data be-

ng required by ViT, Touvron et al. [30] proposed DeiT to ensure per-

ormance on small-scale data. They adopted a knowledge distillation

ramework with a teacher-student formulation and attached a distilla-

ion token (this is terminology for transformers) after the input sequence

o learn from the output of the teacher model. In addition, they argued

hat using a CNN as the teacher model could facilitate training of the

ransformer as the student network to inherit inductive bias. 

Swin-Transformer. To reduce the cost of calculating the attention

f high-resolution images and deal with the varied patch sizes in scene-

nderstanding tasks ( .e.g. , segmentation), Liu et al. [31] proposed the

win-Transformer. They introduced a window self-attention to reduce

he computational complexity and used the shifted window attention

o model cross-window relationships. Moreover, they connected these

ttention blocks with patch merging blocks, which were used to merge

eighboring patches to produce a hierarchical representation for han-

ling variations in the scale of visual entities. 
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Figure 3. A brief illustration of a typical transformer architecture, as proposed in [29] .
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.4. Other techniques 

Recent studies have also validated MLP-based models and exam-

ned the effectiveness of attention mechanism, convolution, and other

odules in CNNs or ViTs. Although CNNs and ViTs have been dom-

nant for some time, the success of certain MLP-based models has

ad great repercussions. A representative example is MLP-Mixer, pro-

osed by Tolstikhin et al. [32] in May 2021, which used a sim-

le pure deep MLP architecture but showed competitive performance.

LP-Mixer uses per-patch flattening instead of the full flattening, and

ositional encoding and class token are not added to the patch se-

uence as in ViT. Following patch embedding learning, the Mixer

LP block is composed of a token-mixing MLP and a channel-mixing

LP, where the former is used to aggregate inter-patch features and

he latter is used to integrate intra-patch features. The final class is

redicted based on the features obtained following global average

ooling. 
62
Simultaneously with or following MLP-Mixer, many other MLP-

ased models have been proposed, .e.g. , gMLP [33] , ResMLP [34] ,

SMLP [35] , and CycleMLP [36] . MLP-Mixer not only inspired fur-

her exploration of MLP-based models but also led to further devel-

pment of neural architectures in CV. As transformers, CNNs, and

LPs have shown competitive performance against each other, there

s still no evidence as to which architecture is more suitable for par-

icular CV learning tasks. In the case of medical image analysis, we

rovide a comparison of CNN and transformer models in part C of

ection 4 . 

. Transformers in medical image applications

Transformers have been widely used in full-stack clinical applica-

ions. In this section, we first introduce transformer-based medical im-

ge analysis applications, including classification, segmentation, image-

o-image translation, detection, registration, and video-based applica-
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Figure 4. Architecture of ViT, as proposed in [13] . Sequential image patches are used as the input and processed with the transformer encoder, and the class

prediction is output by an MLP head. The transformer encoder is constructed using 𝑁 transformer blocks.
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ions. We categorize these applications according to their learning tasks

s illustrated in Figure 5 . 

.1. Classification 

Methods using transformers for both disease diagnosis and prognosis

re formulated as classification tasks, which can be divided into the

ollowing three categories: 
63
(1) applying ViTs directly to medical images;

(2) combining ViTs with convolutions for more representative local

eature learning; 

(3) combining ViTs with graph representations to better handle com-

lex data. 

This section gives a comprehensive overview of the aforementioned

hree transformer categories used for classification tasks on medical im-

ges ( Table 1 ). 
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Table 1 Transformers used in medical image classification tasks

References Disease Organ Datasets Highlight

Accuracy

(%)

CT

Costa et al. [22] COVID-19 Lung COVIDx ViT with performer 91.0 91.0

96.0

COVID-VIT [19] COVID-19 Lung COV19-CT-DB Use sub-volumes for 3D images 76.6

MIA-COV19D [20] COVID-19 Lung COV19-CT-DB Segment lung first, use Swin-Trans 94.3

Liang et al. [37] COVID-19 Lung COV19-CT-DB Feature aggregation by trans,CNN

features, data resampling

-

Scopeformer [38] Intracranial Hemorrhage Brain RSNA intracranial hemorrhage

dataset

Multiple CNNs, GAN for domain

alignment

98.0

Li et al. [39] COVID-19 Lung - Teacher-student model for knowledge

distillation

-

Than et al. [40] COVID-19 Lung COVID-CTset [41] Research on patch size 95.4

Xia et al. [42] Pancreatic Cancer Pancreas - Anatomy-aware transformer with

localization Unet

-

X-ray

Park et al. [43] COVID-19 Lung - Pretrained backbone on CXRs -

Tanzi et al. [44] Femur fracture Bone - Unsupervised learning, compare CNNs

with ViTs

77.0

Van et al. [23] Mammography Chest

X-ray

Breast Lung CBIS-DDSM CheXpert Trans combine multi-view info –

Verenich et al. [45] Chest X-ray Lung COVID-19 Radiology dataset

[46–47]

Transformer × CNN 94.2 94.0

Liu et al. [48] COVID-19 Lung Cohen’s dataset [49] COVID-19

database [47]

Outlooker attention 99.0 99.7

Shome et al. [50] COVID-19 Lung - Grad-CAM-based visualization 98.0 92.0

Krishnan et al. [51] COVID-19 Lung COVID-19 X-ray database

COVID19, Pneumonia and

Normal Chest X-ray PA dataset

Large-scale COVID19 dataset; pretrained

ViT-B/32 model

97.6

MRI

He et al. [21] Brain Age Brain BGSP, OASIS-3, NIH-PD, IXI

ABIDE-I, DLBS, CMI, CoRR

Image-level and patch-level fusion with

attention

-

Kim et al. [52] Gender classification Task

decoding

Brain Brain HCP-Rest HCP-Task Spatio-temporal attention for brain graph

representation

88.2 87.0

mfTrans-Net [53] Hepatocellular carcinoma Hepatic - Trans combine multi-phase info;

multi-level learning

-

3DMeT [54] Knee cartilage defect Knee - Generalize trans on 3D images 66.4 70.2

Histological Image

Gao et al. [55] Papillary renal cell

carcinoma

Kidney TCGA-KIRP Instance-based patches; positions & grade

encodings

89.2 93.0

Chen et al. [56] Gastric histopatho-logical

Image

Stomach HE-GHI-DS GIM and LIM modules; parallel structure 98.0

Zeid et al. [57] CRC Colorectal Kather [58] colorectal cancer

histology dataset

GIM and LIM modules; parallel structure 93.3 94.8

Ikromjanov et al. [59] Prostate cancer Prostate Kaggle PANDA challenge dataset Classify according to Gleason grading -

Zhao et al. [60] cervical cancer Cell a. Pap smear dataset b.

SIPAKMeD c. Herlev

taming trans - T2T-ViT -

Others

POCFormer [61] COVID-19 Lung POCUS Lightweight trans-based model 91.0 95.0

95.0

Gheflati et al. [62] Breast Cancer Breast BUSI [63] Dataset B [64] ViT on breast ultrasound images 85.7 86.0

86.7 85.0

86.4

Jiang et al. [65] Acute lymphoblastic

leukemia

Lymph ISBI 2019 dataset ViT and CNN ensemble 99.0

Xie et al. [66] Melanoma Skin ISIC-2017 Skin dataset SimAM with Swin-Trans -

Li et al. [67] Skin Lesion Skin HAM10000 DermNet Trans on Out-of-Distribution Detection -

Yu et al. [68] Melanoma Skin ISIC 2020 dataset Transformer × contrastive learning -

Wu et al. [69] Melanocytic lesions Skin MPATH-Dx Encode multi-scale features with trans 60.0

TransEye et al. [70] Fundus disease Eye OIA Trans × CNN 84.1
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.1.1. Applications of pure transformers 

We call ViTs that are similar to the originally proposed one [13] p ure

ransformers. These methods usually do not contain significant struc-

ural changes compared with the original method. We introduce the

iterature of pure transformers by image modality, e.g. , X-ray [44,48] ,

T [19-20] , magnetic resonance imaging (MRI) [21] , ultrasound [61] ,

nd optical coherence tomography (OCT) [71] . 

X-ray. X-ray is an inexpensive and convenient imaging technique

hat is widely used in screening and diagnosis of diseases including,

reast cancer, pneumonia, and fracture. During the COVID-19 pandemic

n particular, X-ray has played a very important part in disease screening

nd is thus a popular modality for AI researchers to use when designing
64
ransformer-based methods. Liu et al. [48] developed the vision out-

ooker (VOLO), a ViT model that replaced the original attention mech-

nism with the outlooker attention, as proposed in [72] . Their model

chieved SOTA performance for the diagnosis of COVID-19 without pre-

raining on ImageNet. Shome et al. [50] proposed a ViT-based model for

OVID-19 diagnosis that was trained on a self-collected large dataset of

OVID-19 chest X-ray images. They also used Grad-CAM [73] to show

he progression of COVID-19. Krishnan et al. [51] applied an ImageNet-

retrained ViT-B/32 network to distinguish COVID-19, using patches

rom chest X-ray images as inputs. Given the effectiveness of ViTs for

OVID-19 diagnosis, Tanzi et al. [44] used a ViT model to classify femur

racture. Their work used clustering methods to validate the ability of
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N  
he ViT model to extract features and compared its performance against

hat of CNNs. The aforementioned models demonstrate the importance

f large-scale datasets, which enhance the performance of transformers.

herefore, as the scale of the dataset for COVID-19-related tasks [48,50-

1,73] was larger than that used for the femur fracture task [44] , the

erformance on the COVID-19-related task was also higher. 

Computed tomography. CT is based on the high contrast between

as and tissue and is commonly used for thoracic disease diagnosis.

hus, the applications of pure transformers to CT images have mainly

ocused on thoracic diseases. For example, Than et al. [40] studied the

ffect of patch size when using ViT for COVID-19 and diseased lung clas-

ification tasks. They found that the performance dropped with larger

atch sizes, revealing a trade off between local and global information.

he 32 × 32 patch resulted in the best accuracy. Costa et al. [22] used ViT

nd its variants to distinguish COVID-19 pneumonia and other pneumo-

ia from normal cases. By comparing the performance of several mod-

ls, they showed that pretrained models including DeiT [30] achieved

ompetitive results. The conventional ViT and its variants using per-

ormer encoder also achieved good results, even without pretraining. Li

t al. [39] designed a platform for COVID-19 diagnosis based on ViT.

hey converted CT images into a series of flattened patches to fit the

nput of ViT for diagnosis. They also adopted a teacher-student model

o distill knowledge from a CNN pretrained on natural images. Gao

t al. [19] applied ViT to both two-dimensional (2D) and 3D CT scans to

iagnose COVID-19. They constructed an image sub-volume by extract-

ng a fixed number of slices, thereby ‘normalizing’ imaging sequences

ith a varying number of slices. They also proved that the performance

f ViT was better than that of DenseNet, which is a competitive CNN

odel. Zhang et al. [20] trained the popular Swin-Transformer on CT

mages. Specifically, the framework first segments the lung via a Unet

nd then feeds the lung region to the feature extractor. This strategy

elped to reduce the computation burden of the transformer framework.

he aforementioned works show the importance of pretraining for CT

mage classification tasks, as CT images are much harder to acquire than

-ray images. Also, methods that reduce computational complexity us-

ng attention mechanism are crucial to classification of CT images, ow-

ng to the large volume of the images.

Magnetic resonance imaging. MRI has a better imaging qual-

ty, particularly for subtle anatomical structures including vessels and

erves; however, acquisition of MRI images is time-consuming. As MRI

s a powerful non-invasive imaging technology for soft tissues, it is com-

only used in neuroimaging studies. For instance, He et al. [21] pro-

osed a two-pathway network for brain age estimation. A global path-

ay was designed to capture the global contextual information from the

rain MRI, whereas a local pathway was responsible for capturing fine-

rained information from local patches. The local and global contextual

epresentations were then fused by a global-local attention mechanism.

ext, the concatenation of fused features and local patches was fed into

 revised global-local transformer. MRI also has a wide spectrum of clin-

cal applications, e.g., cancer diagnosis, which makes it a strong candi-

ate modality for training ViTs. 

Ultrasound. Ultrasound at point of care has expanded the range of

pplications of ultrasound, as specific positions are not necessary to ac-

uire images. Perera et al. [61] developed a transformer-based architec-

ure to diagnose COVID-19 based on ultrasound clips. To ensure memory

nd time efficiencies, they replaced the standard ViTs with Linformer,

educing the space time complexity from 𝑂( 𝑛 2 ) for the conventional

elf-attention mechanism to 𝑂( 𝑛 ) . Moreover, ultrasound has became a

rominent modality for imaging of breast cancer owing to its ease of

se, low cost, and safety. Gheflati et al. [62] used ViTs to classify nor-

al, malignant, and benign breast tissues based on ultrasound images.

hey also compared the performance of ViTs of various configurations

gainst CNNs to demonstrate their efficiency. 

Others. In addition to the above-mentioned imaging modalities,

ther imaging technologies have been adopted for the examination

nd diagnosis of specific diseases, e.g. , using dermoscopy images [66] ,
65
undus images [74] , or histopathology images [59] . For instance, Xie

t al. [66] aimed to detect melanoma using dermoscopy images. They

ombined the Swin-Transformer with a parameter-free attention mod-

le, SimAM, to learn better features for the target classification task. As

he features fed into the classifier contained rich semantic information

ut lacked detailed information, they designed the output of the first

hree Swin-Transformer blocks as three SimAM blocks input separately;

hen, all SimAM block outputs including the final feature map were con-

atenated together to form the new final feature map, which served as

he input to the final classification layer. Li et al. [67] evaluated the per-

ormance of transformers on out-of-distribution (OOD) detection tasks

n medical image analysis. The original ViT and the DeiT with multi-

ead, soft distillation, and hard distillation are included in their work.

he performance of these models on skin lesion datasets HAM10000 and

ermNet showed the limited performance and safety critical problems

f transformers on the OOD detection task. Ikromjanov et al. [59] used

iT to assist pathologists to grade prostate cancer according to the Glea-

on grading system on whole-slide histopathology images and reported

romising results. 

As shown in Table 1 , despite the excellent performance of pure trans-

ormers in certain cases, e.g. , analysis of COVID-19 X-ray images, further

evelopment is necessary for other tasks. 

.1.2. Applications of hybrid transformers 

Although pure ViTs can achieve promising results without much

odification, there has been extensive exploration of the possibilities

f combining ViTs with other learning components to better capture

omplex data distributions or achieve better performance. Typical cases

nclude combinations of transformers with (1) convolutional layers and

2) graph representations. We next introduce both categories.

Transformers with convolutions. ViTs focus more on modeling the

lobal relationship within the data, whereas conventional CNNs pay

ore attention to the local texture. These differences have inspired re-

earchers to combine the advantages of ViTs and CNNs. In addition, the

nalysis of medical images involves not only the correlation of regions

n the image but also subtle textures. Hence, many studies have explored

NN-ViT combinations. 

Most applications have focused on the diagnosis of thoracic diseases,

specially COVID-19 and related diseases. Benefiting from ViT’s power

f feature integration, Van et al. [23] used a transformer to conduct

ulti-view analysis of unregistered medical images in order to classify

hest X-rays. They proposed a transformer-based approach that consid-

red spatial information across different views at the feature-level by

irtue of a trainable attention mechanism. They applied the transformer

o intermediate feature maps produced by CNNs to retrieve features

rom one view and transfer them to another view. Thus, additional con-

ext was added to the original view without requiring pixel-wise corre-

pondence. Their approach also contributed to a reduction in computa-

ional complexity by substituting a smaller number of visual tokens for

he source pixels. Verenich et al. [45] introduced global spatial infor-

ation from ViTs to CNNs for pulmonary disease classification, while

reserving spatial invariance and equivariance. Liang et al. [37] used

 CNN to mine effective features and a transformer for feature aggre-

ation. In addition, an effective data sampling strategy can be used to

educe the size of the inputs while preserving sufficient information for

iagnosis. Park et al. [43] designed a pretrained CNN backbone followed

y a ViT for COVID-19 diagnosis. A large-scale public dataset for CXR

lassification was used for model pretraining. For the simple task of clas-

ifying thoracic diseases, existing methods are simple yet effective, with

 CNN used to extract the features, followed by capture of high-level

nformation with a transformer. 

For applications other than COVID-19 diagnosis, Yassine

t al. [38] combined several CNNs with a ViT by feeding extracted

eatures into the ViT. They compared the number of CNNs as well as

heir pretraining configurations against the hybrid CNN-ViT model.

otably, they pretrained the CNN on images generated from the
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Figure 6. Structure of the GasHis transformer model [56] .
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mageNet dataset [12] using a generative adversarial network (GAN)

retrained on brain CT images. They claimed that further pretraining

n the generated images would lead to a better inductive bias for the

arget CT dataset as the dissimilarities of the two domains would be

educed. Zhao et al. [53] used a combination of CNNs and transformers

o conduct multi-index quantification of hepatocellular carcinoma

sing multi-phase contrast-enhanced MRI (CEMRI). They proposed

rTrans-Net, which involves three parallel encoders, each followed by

 non-local transformer that extracts features from the arterial phase,

V phase, and delay phase. Next, a phase-aware transformer is used

o quantify the relevance of each phase for the target multi-phase

EMRI information fusion and selection. Quantification is conducted

ot only after the phase-aware transformer but also after the non-

ocal transformers to form an enhanced loss function to constrain

he quantification task. Jiang et al. [65] explored the effectiveness

f ensemble learning by treating ViTs and CNNs as base learners to

iagnose acute lymphoblastic leukemia based on microscopic images

f B-lymphoid precursors and leukemic B-lymphoblast cells. They

roposed an ensemble model based on the ViT and EfficientNet.

s the two base models were complementary, the ensemble results

howed some improvement. They also proposed a data enhancement

ethod to handle the imbalance between normal and cancer cells

n each image. Chen et al. [56] proposed the multi-scale ViT model

hown in Figure 6 , called GasHis-Transformer, for classification of

astric histopathological images. They designed a global information

odule (GIM) and local information module (LIM) (based on CNNs) to

xtract features. Moreover, they borrowed the parallel structure from

nception-V3 to learn multi-scale local representations. Their model was

obust to ten different adversarial attacks or conventional noises and

as generalizable to classification tasks of histopathological images of

ther cancers. Gao et al. [55] proposed the instance-based ViT (i-ViT)
66
or papillary renal cell carcinoma subtyping. The i-ViT first extracts

nd selects instance features from instance-level patches, which include

 nucleus with parts of the surrounding background and the nuclei

rade. Next, it aggregates these features to further capture cell-level

nd cell-layer-level features. Last, the model encodes both types of

ne-gained features into the final image-level representation, where

rades and positions are embedded for subtyping. Wang et al. [54] pro-

osed a 3D transformer that could outperform 3D CNNs. They used a

D convolutional layer to extract features of 3D blocks and a teacher-

tudent network to learn transformer weights from a CNN teacher. Xia

t al. [42] proposed anatomy-aware transformers for pancreatic cancer

creening, and showed to win the radiologists. Zeid et al. [57] vali-

ated ViTs and their variants compact convolutional transformers on

 multi-class colorectal cancer (CRC) histology image classification

ask using a public CRC histology dataset. Zhao et al. [60] combined

aming transformers with T2T-ViT to handle unbalanced samples with

nconsistent image quality for a cervical cancer classification task.

u et al. [68] adopted the transformer encoder to model dependency

mong features of skin lesions to detect the ugly duckling sign for

elanoma identification. Yang et al. [70] proposed the transformer

ye (TransEye) for fine-grained fundus disease image classification by

ombining CNN and transformer models. Wu et al. [69] proposed ScAT-

et to model inter-patch and inter-scale representations at multiple

nput scales to diagnose melanocytic lesions in biopsy images. These

ybrid transformers for various applications contain rich innovations,

ncluding structural improvements, novel ViT modules, CNN modules,

nd learning strategies for pretraining and ensembling. 

Transformers with graphs. Learning with graphs is a common prac-

ice in MIA. The core concept of graph learning is learning a com-

act representation of each sample (e.g., embeddings) while preserv-

ng the intrinsic inter-sample relationships via a data graph [75] . As an
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ttention-based network, transformer is suitable for operations on graph

ata, including aggregation of node features and calculation of node re-

ationships. 

In the field of network neuroscience, a brain network is modeled

s a graph where each node denotes an anatomical region of inter-

st (ROI) and the edge connecting two nodes encodes their interaction

e.g., neural firing). Brain graphs play an important part in advancing

ur understanding of the brain as a highly interconnected system in

oth health and disease [76-77] . Kim et al. [52] leveraged the dynamic

haracteristics of a functional connectivity network by incorporating

ynamic features into a compact brain graph representation. Specifi-

ally, they proposed the spatio-temporal attention graph isomorphism

etwork (STAGIN) for learning a dynamic graph representation of the

rain connectome with spatio-temporal attention. In STAGIN, the GNN

s used to extract graph-level representations for the functional brain

onnectome at each timestep, and a transformer encoder is used to ob-

ain the final representation of a sequence of dynamic graphs. In de-

ail, encoded timestamps are concatenated with node features to em-

ed temporal information. The authors claim that the use of the trans-

ormer not only improved the classification performance of the model

ut also improved its spatial-temporal interpretability. Such methods

ave validated the power of transformers for mining both features

nd relationships of complex graphs, attracting more attention to this

ethodology. 

We draw the following conclusions regarding the use of transformers

or medical image classification tasks. 

• Transformers have achieved performance comparable with or better

than that of CNNs on most tasks.

• Transformers perform best on large-scale datasets, which somewhat

limits their applicability, especially in the medical image analysis

field. Pretraining could alleviate this problem.

• The computational burden of training transformers on large images

is high. Hence, reducing model complexity and developing light-

weight models are key factors to improve efficiency.

• Hybrid transformers have attracted increasing attention as they have

the advantages of both conventional networks ( i.e. , CNNs and GNNs)

and transformers.

.2. Segmentation 

Transformer-based methods have also been applied to a vari-

ty of segmentation tasks, including abdominal multi-organ seg-

entation [25,78-80,82,86,93-94,96-97,106,113-114,119,121] ,

horacic multi-organ segmentation [114] , cardiac segmentation

78,80,84,86-87,94,96-97,106,113,119,121,127] , Pancreas segmenta-

ion [81,118] , brain tumor/tissue segmentation [82,86,88,100,107-

08,117-118,128-134] , polyp segmentation [91,103,120,135-136] ,

iver and hepatic lesion segmentation [86,93,117,137–140] , kid-

ey tumor segmentation [86,138] , skin lesion segmentation

91,103,109,117,120,136,141] , prostate segmentation [91,140] ,

land segmentation [24,95,100,109,120] , nucleus segmentation

24,95,100,109,120] , cell segmentation [103,142-143] , spleen seg-

entation [107] , lung field/COVID-19 pneumonia lesion segmentation

109] , retinal vessel segmentation [144] , and hyperspectral pathology

mage segmentation [145] . Several notable methods are listed and

etailed in Table 2 .

The U-shaped convolutional neural network architecture known as

net has achieved tremendous success on most medical image segmen-

ation tasks. However, owing to the use of convolution operations, Unet

s also limited in its ability to model long-term dependencies. To over-

ome this limitation, researchers have designed robust hybrid trans-

ormers combined with the Unet architecture; these will be introduced

n the first part of this section. Several methods also apply pure trans-

ormers to segmentation tasks; these will be introduced in the second

art of this section. 
67
.2.1. Hybrid transformers 

Most existing research on coupling transformers with the popular

-shaped architecture focuses on the following three aspects:

(1) inserting transformer layers at different levels of the U-shaped

rchitecture; 

(2) combining transformers and CNNs using different strategies;

(3) using multi-scale features or attention mechanisms.

We detail below each of these three categories.

.2.1.1. Location of transformer in U-shaped architecture 

An intuitive way to insert transformer layers into a U-shaped ar-

hitecture is to insert a whole transformer between the encoder and

ecoder blocks to build long-term dependencies between high-level vi-

ion concepts. Based on this idea, Chen et al. [78] proposed TransUNet,

hown in Figure 7 , which extracts high-resolution spatial features us-

ng a CNN and then encodes the global context using a transformer.

he self-attention features encoded by the transformer are then up-

ampled and combined with features at multiple scales extracted from

he encoding path using skip connections for precise localization. Tran-

UNet achieved superior performance compared with V-Net, AttnUNet,

nd ViT on multi-organ and cardiac segmentation tasks. Similarly, Yao

t al. [79] combined a transformer network with a Claw Unet archi-

ecture; the resulting model outperformed TransUnet for synapse multi-

rgan segmentation. In another instance, Xu et al. [80] proposed LeViT-

Net, which integrates a LeViT Transformer into the Unet architecture.

ha et al. [81] designed a transformer-Unet by adding Transformer mod-

les to Unet; the resulting model outperformed TransUnet. 

In contrast to the above approaches, in which the transformer was

nserted immediately after the encoder block, Li et al. [82] added an

ttention upsampling component to the decoder. They also proposed

 window attention decoder and window attention upsampling, work-

ng on local windows, to reduce memory and computation costs. Gao

t al. [84] presented a UTNet in which self-attention modules are ap-

lied to both encoder and decoder blocks to capture long-range depen-

encies at multiple scales with minimal overhead. They proposed an

fficient self-attention mechanism along with relative position encod-

ng, which reduced the complexity of the self-attention operation signif-

cantly from 𝑂( 𝑛 2 ) to approximate 𝑂( 𝑛 ) . In an upgrade of their work, i.e. ,

TNetV2 [87] , they further proposed an efficient bidirectional atten-

ion. Fu et al. [86] proposed TF-Unet, which is built on the intertwined

ackbone of convolution and transformers at multiple scales. Several

tudies report improved strategies for feature concatenation [93,127] . 

.2.1.2. Strategies for bridging transformers and CNNs 

Unlike the aforementioned methods that combine transformers and

-shaped architectures within a single inference path, some stud-

es have explored different transformer-CNN coupling strategies. Sun

t al. [88] used Unet and transformer encoders to generate representa-

ions independently and then integrated their representations for sub-

equent decoding. Similarly, Li et al. [170] proposed X-Net, which used

 CNN and a transformer to extract local and global features simulta-

eously. Zhang et al. [91] proposed TransFuse, which also combines

ransformers and Unet in a parallel style. In an improvement on the

bove-mentioned work, a novel fusion technique, i.e. , BiFusion module,

as proposed to efficiently fuse multi-level features from both branches.

uo et al. [95] also used bidirectional cross-attention to fuse local in-

ormation extracted by the convolution operations and global informa-

ion learned by the self-attention mechanisms. Liu et al. [96] proposed

HTrans, which introduces a parallel hybrid module in deep stages,

here convolution blocks and the modified 3D Swin-Transformer learn

ocal features and global dependencies separately; then, a sequence-to-

olume operation unifies the dimensions of the outputs to achieve fea-

ure aggregation ( Figure 8 ). 

Zhou et al. [97] claimed that most of the recently proposed

ransformer-based segmentation approaches simply treat transformers

s assisted modules to help encode global context in convolutional
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Table 2 Transformers for medical image segmentation tasks

References Task Dataset Performance (%) Highlight

TransUnet, Chen et al. [78] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 77.48

b. 89.71

TransClaw, Yao et al. [79] ACT-MOS Synapse multi-organ CT 78.09 Claw Unet

LeViT-Unet, Xu et al. [80] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 78.53

b. 90.32

LeViT Tunet, Sha et al. [81] Pancreas segmentation CT82 datasets 79.66

Li et al. [82] a. Brain tumor segmentation

b. ACT-MOS

a. MSD-01 [83]

b. Synapse multi-organ CT

a. 80.30

b. 74.75

UTNet, Gao et al. [84] Cardiac segmentation M&Ms [85] 88.3

TransBTSV2, Fu et al. [86] Brain tumor segmentation a. BraTS 2019 dataset

b. BraTS 2020

c. LiTS2017 dataset (lesion, liver)

d. KiTS2019 dataset (kidney, tumor)

a. 85.18

b. 84.90

c. 71.20, 96.20

d. 97.37, 83.69

UTNetV2, Gao et al. [87] Cardiac segmentation ACDC 92.14

HybridCTrm, Sun et al. [88] Brain tissue segmentation a. MRBrainS [89]

b. iSeg-2017 [90]

a. 83.47

b. 87.16

Dual-Path Network

TransFuse, Zhang et al. [91] a. Polyp segmentation

b. Skin lesion segmentation

c. Hip segmentation

d. Prostate segmentation

a. KCCEE

b. ISIC2017 [92]

c. In-house dataset

d. MSD dataset

a. 92.0, 94.2, 78.1, 89.4, 73.7

b. 87.2

c. -

d. 76.4

Multi-level feature fusion

CA-GANformer,You et al. [93] a. ACT-MOS

b. Liver tumor segmentation

a. Synapse multi-organ CT

b. LiTS dataset

a. 82.55

b. 73.82

GAN

ECT-NAS, Xu et al. [94] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 78.97

b. 89.83

Searching strategy

HyLT, Luo et al. [95] a. Gland segmentation

b. Nuclear segmentation

a. GlaS dataset

b. MoNuSeg dataset

a. 90.86

b. 80.25

Multi-level feature fusion

PHTrans, Liu et al. [96] a. ACT-MOS

b. Cardiac segmentation

a. BCV dataset

b. ACDC

a. 88.55

b. 91.79

Multi-level feature fusion

nnFormer, Zhou et al. [97] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 87.40

b. 91.78

PMTrans, Zhang et al. [24] a. Gland segmentation

b. Nuclear segmentation

a. GlaS dataset [98]

b. MoNuSeg dataset [99]

a. 81.48

b. 80.09

Multi-resolution images

MedT,Valanarasu et al. [100] a. Brain anatomy segmentation

b. Gland segmentation

c. Nucleus segmentation

a. Brain US dataset [101]

b. GlaS dataset

c. MoNuSeg dataset

-

Global + local CoTr, Xie

et al. [25]

ACT-MOS BCV dataset [102] 85.0 Multi-scale features

MCTrans, Ji et al. [103] a. Cell segmentation

b. Polyp segmentation

c. Skin lesion segmentation

a. Pannuke [104]

b. KCCEE

c. ISIC2018 [105]

a. 68.40

b. 92.30, 86.58, 83.69, 86.20

c. 90.35

Multi-scale features

D-Former, Wu et al. [106] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 88.83

b. 92.29

Dilated Transformer

TF-Unet, Fu et al. [86] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 85.46

b. 91.72

Multi-scale features

UNETR, Hatamizadeh

et al. [107]

a. Brain tumour segmentation

b. Spleen CT segmentation

a. MSD-01

b. MSD dataset Task09

a. 71.81

b. 95.82

Multi-resolution

Swin UNETR, Hatamizadeh

et al. [108]

Brain tumor segmentation BraTS2021 dataset 91.3 Swin-Transformer

TransAttUnet, Chen et al. [109] a. Skin lesion segmentation

b. Lung field segmentation

c. COPLE

d. Nucleus segmentation

e. Gland Segmentation

a. ISIC2018 dataset

b. JSRT, Montgomery and NIH [110]

c. Clean-CC-CCII dataset [111]

d. Bowl dataset [112]

e. GlaS dataset

a. -

b. 98.88

c. 86.57

d. 91.62

e. 89.11

Feature fusion

MT-Unet, Wang et al. [113] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 78.59

b. 90.43

AFTer-Unet, Yan et al. [114] a. ACT-MOS

b. Thoracic segmentation

a. BCV dataset

b. Thorax-85 [115] , SegTHOR [116]

a. 81.02

b. 92.32, 92.10

Axial fusion S 2 WinTOUnet,

Zhang et al. [117]

Skin lesion segmentation ISIC2018 dataset 90.4 Star-shaped Window

Self-attention

Karimi et al. [118] a. Brain cortical plate segmentation

b. Pancreas segmentation

c. Hippocampus segmentation

- a. 87.9

b. 82.6

c. 88.1

Swin-Unet, Cao et al. [119] a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 79.13

b. 90.00

Swin-Transformer

DS-TransUNet, Lin et al. [120] a. Polyp segmentation

b. Skin lesion segmentation

c. Gland segmentation

d. Nucleus segmentation

a. Kvasir, CVC-ColonDB, EndoScene,

ETIS, CVC-ClinicDB

b. ISIC2018

c. GlaS Dataset

d. Bowl dataset

a. 93.5, 79.8, 91.1, 77.2, 93.8

b. -

c. 87.19

d. -

Swin-Transformer

MISSFormer, Huang

et al. [121]

a. ACT-MOS

b. Cardiac segmentation

a. Synapse multi-organ CT

b. ACDC

a. 81.96

b. 87.90

Multi-scale feature

ACT-MOS: abdominal CT multi-organ segmentation; COPLE: COVID-19 pneumonia lesion segmentation; ACDC: automated cardiac diagnosis challenge; MSD-01:

Medical Segmentation Decathlon dataset Task01; KCCEE: Kvasir [122] , CVC-ClinicDB [123] , CVC-ColonDB [124] , EndoScene [125] , and ETIS [126] .

68
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Figure 7. Overview of TransUNet for medical image segmentation. (a) Schematic design of the Transformer layer; (b) Architecture of TransUNet. [78] Transformer

layers are inserted into the encoder of the Unet.

Figure 8. Comparison of several hybrid architectures of Transformer and CNN [96] .
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epresentations, without investigating how to optimally combine self-

ttention with convolution. To address this issue, they introduced the

nFormer, which has an interleaved architecture based on empirical

ombination of self-attention and convolution. Xu et al. [94] proposed

he ECT-NAS method to search for efficient CNN-transformer archi-

ectures for medical image segmentation based on a multi-scale space

earch. 

.2.1.3. Multi-scaling 

The multi-scale strategy for transformers in MIA uses features in a

ulti-scale manner or takes multi-scale images as inputs. 

(1) Multi-resolution images. Zhang et al. [24] proposed a pyramidal

etwork architecture, namely pyramid medical transformer (PMTrans),

hich captures multi-range relations by working on multi-resolution im-

ges. Valanarasu et al. [100] added gated axial transformer layers in the

ncoder, which contains the basic building block of both height- and

idth-gated multi-head attention blocks. The whole image and patches

ere used to learn global and local features, respectively, and a local-

lobal training strategy was proposed to further boost the overall per-

ormance. 

(2) Multi-scale features. In contrast to TransUNet, which only uses

 transformer to process the low-resolution feature maps learned from

he previous layer, Xie et al. [25] proposed a deformable transformer to

rocess multi-scale and high-resolution feature maps. Ji et al. [103] pro-

osed a multi-compound transformer (MCTrans), which embeds multi-

cale convolutional features as a sequence of tokens and performs intra-
69
nd inter-scale self-attention. In contrast to models that use CNNs to ex-

ract features, Hatamizadeh et al. [107] introduced Unet transformers

UNETR), which use a pure transformer as an encoder to learn sequence

epresentations of the input volume. The transformer encoder is directly

onnected to a decoder via skip connections at different resolutions to

ompute the final semantic segmentation output. Zhang et al. [117] pro-

osed S 2 WinTOUnet, which uses a star-shaped window self-attention to

btain fine-grained details and coarse-grained semantic information. 

(3) Multi-level attention. Chen et al. [109] proposed TransAttUnet,

n which a multi-level guided attention and multi-scale skip connec-

ion are jointly designed to effectively enhance traditional U-shaped

rchitectures. Both transformer self attention and global spatial atten-

ion are incorporated into TransAttUnet to effectively learn non-local

nteractions between encoded features. Wang et al. [113] proposed the

ixed transformer module, which calculates self-affinities through well-

esigned local-global Gaussian-weighted self-attention and then mines

nterconnections between data samples through external attention. Wu

t al. [106] proposed the dilated transformer, which conducts self-

ttention for pairwise patch relations that are captured alternately in

ocal and global scopes. 

(4) Multi-axial fusion. Yan et al. [114] applied an axial fusion trans-

ormer to fuse inter-slice and intra-slice information, which reduced the

omputational complexity of calculating self-attention in 3D space. 

To conclude, the aforementioned methods all leverage additional

eatures learned using a feature fusion strategy for more effective

earning. 
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Table 3 Transformers for image-to-image translation tasks in medical images

References Application DataSet Metrics Task

GIT, Watanabe et al. [26] Parkinson the Parkinson’s Progression Marker

Initiative database [146]

- Image synthesis (SPECT)

VTGAN, kamran et al. [147] Retinopathy Fundus & FA [148] FID, KID Image synthesis (Fundus → FA)

GANBERT, Shin et al. [149] Alzheimer ADNI 1 PSNR, SSIM, RMSE Image synthesis (MRI → PET)

Hu et al. [150] Brain IXI 2 PSNR, SSIM Image synthesis (MRI → T1/T2)

SLATER, Korkmaz et al. [151] Brain IXI 3 ; fastMRI [152] PSNR, SSIM Zero-shot MRI Reconstruction

CyTran, Ristea et al. [153] Lung Coltea-Lung-CT-100W [153] MAE, SSIM, RMSE CT Translation (Non-Contrast → Contrast)

ResVit, Dalmaz et al. [154] Brain; Pelvic IXI; BRATS [155–157] ; pelvic MRI-CT

database [158]

PSNR, SSIM Multi-model Image synthesis

T 2 Net, Feng et al. [159] Brain IXI; Clinical dataset PSNR, SSIM, NMSE MRI Reconstruction & Super-resolution

PTNet, Zhang et al. [160] Infant brain dHCP [161] PSNR, SSIM MRI synthesis & Super-resolution

TED-net, Wang et al. [162] Liver lesions 2016 NIH-AAPMMayo Clinic LDCT Grand

Challenge dataset [163]

SSIM, RMSE Low-dose CT Denoising

Eformer, Luthra et al. [164] Liver lesions 2016 NIH-AAPMMayo Clinic LDCT Grand

Challenge dataset [163]

PSNR, SSIM, RMSE Low-dose CT Denoising

FID: frechet inception distance; KID: kernel inception distance; PSNR: peak signal-to-noise ratio; SSIM: structural similarity index; RMSE: root mean square error;

MAE: mean absolute error; NMSE: normalized mean square error.
1 http://adni.loni.usc.edu/ . 
2 http://brain-development.org/ixidataset/ . 
3 http://brain-development.org/ixidataset/ . 
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.2.2. Pure transformers 

In addition to the aforementioned variants of the Unet architecture

hat combine a transformer with convolutions, Karimi et al. [118] used

imple self-attention between adjacent image patches without convo-

ution operations. A 3D image is divided into 𝑛 3 3D patches ( 𝑛 = 3 or

), and a 1D embedding is learned for each patch. Through the self-

ttention between patch embeddings, the network outputs the segmen-

ation result of the center patch. Methods using this assumption can be

asily recognized as pure transformers. 

Cao et al. [119] developed an Unet-like pure transformer for medi-

al image segmentation by feeding tokenized image patches into the a

ransformer-like U-shaped encoder-decoder architecture with skip con-

ections for semantic feature learning in a local-global manner. Lin

t al. [120] went a step further and proposed DS-TransUNet, which first

dopts dual-scale encoder subnetworks based on Swin-Transformer to

xtract coarse- and fine-grained feature representations on different se-

antic scales. A well-designed transformer interactive fusion module

as also proposed to effectively establish global dependencies between

eatures of different scales through the self-attention mechanism. To bet-

er leverage the natural multi-scale feature hierarchies of transformers,

uang et al. [121] proposed MISSFormer, which has two appealing de-

ign features: (1) an enhanced transformer block as a feed-forward net-

ork with better feature consistency, long-range dependencies, and lo-

al context; and (2) an enhanced transformer context bridge to model

ong-range dependencies and local context of multi-scale features gen-

rated by the hierarchical transformer encoder. 

.3. Image-to-image translation 

Transformer models also have been shown to have strong learning

bility in many image-to-image translation applications including image

ynthesis [16] , reconstruction [171] , and super-resolution [172] . How-

ver, in the field of medical image analysis, studies ( e.g. , [26,147] ) on

mage-to-image translation have recently started to emerge. We list ex-

sting transformer-based image-to-image translation methods in Table 3 ,

s well as the corresponding evaluation metrics. 

.3.1. Image synthesis 

In the medical field, image synthesis remains very challenging ow-

ng to inter-subject variability and the fact that anatomical hallucina-

ions (e.g . , hallucinating a white spot in a brain MRI) might be detri-

ental to diagnostic tasks. In recent years, generative adversarial learn-

ng has been widely used to tackle image synthesis tasks. Therefore,

ransformers have been combined with a generative adversarial learn-

ng paradigm for image synthesis. For example, Hu et al. [150] intro-
70
uced a double-scale discriminator GAN for cross-modal medical image

ynthesis, consisting of a transformer-based global discriminator and a

NN-based local discriminator. Watanabe et al. [26] proposed a genera-

ive model architecture based on a transformer decoder block, owing to

ts powerful ability in modeling time series. During data processing, they

ormalized the pixel values of single photon emission CT (SPECT) im-

ges by the specific/nonspecific binding ratio. During the training pro-

ess, they used a transformer decoder to construct an auto-regression

odel and trained the model on [ 123 𝐼] FP-CIT SPECT images from the

arkinson’s Progressive Marker Initiative database in an unpaired man-

er. The trained model could generate SPECT images that had charac-

eristics of Parkinson’s disease patients. Kamran et al. [147] proposed

 transformer-based conditional GAN, shown in Figure 9 , that could

imultaneously perform semi-supervised image synthesis from fundus

hotographs to fluorescein angiography (FA) for diagnosis of retinal dis-

ase. 

To tackle the problem of the intensity range of positron emission to-

ography (PET) often being wide and dense and even heavily biased

oward zero, Shin et al. [149] built a GAN utilizing BERT, namely GAN-

ERT, to generate PET images from MRI images. Luo et al. [173] pro-

osed a 3D transformer GAN to reconstruct high-quality PET image

t a low dose. In order to overcome the limitation of scarce access to

arge medical datasets, Korkmaz et al. [151] introduced an unsuper-

ised reconstruction method based on zero-Shot Learned Adversarial

ransformERs (SLATER) to perform MRI synthesis. SLATER is an uncon-

itional adversarial architecture consisting of a synthesizer, a discrim-

nator, and a mapper. The synthesizer uses cross-attention transformer

locks to capture long-range relationships, and the mapper maps noise

nd latent variables onto MR images. Ristea et al. [153] proposed an

rchitecture named CyTran, which is based on generative adversarial

onvolutional transformers and integrates the cycle-consistency loss for

ranslation of unpaired CT images between contrast and non-contrast

T scans. 

In addition to their applications to image synthesis between two

odalities, transformer models have been used successfully in multi-

odal medical image synthesis. For example, Dalmaz et al. [154] pro-

osed a generative adversarial approach, ResViT, for multi-modal med-

cal image synthesis. The generator in ResViT is based on encoder-

ecoder architecture, with a central bottleneck that comprises aggre-

ated residual transformer blocks capable of synergistically preserving

ocal and global contexts. 

.3.2. Image super-resolution 

Super-resolution imaging comprises a class of techniques that en-

ance the resolution of an imaging system. It is also a popular sub-

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Figure 9. Overview of the architecture of VTGAN, which uses coarse and fine generators 𝐺 𝑓 and 𝐺 𝑐 , and ViTs 𝑉 𝑇 𝑓 , 𝑉 𝑇 𝑐 as discriminators [147] . 
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eld of image synthesis. Outstanding contributions have been made by

ransformer models on super-resolution tasks in medical image analysis.

or instance, Feng et al. [159] introduced a task transformer network

T 

2 Net) to jointly learn image reconstruction and super-resolution tasks

n MRI. This multi-task framework included a super-resolution branch

nd a common resolution branch, and the authors designed the trans-

ormer module to embed the similarity and align the gap between the

wo branches. Zhang et al. [160] proposed a high-resolution synthesizer

ased on pyramid transformer (PTNet) and used it for MRI synthesis of

mages of infant brains. PTNet consists of a performer encoder, a per-

ormer decoder, and a transformer bottleneck that inherits U-structures

s well as multi-resolution pyramid structures. 

.3.3. Image denoising 

Image denoising is the task of removing noise from an image. It is

 fundamental step in several clinical applications. For example, Wang

t al. [162] used a transformer for low-dose CT (LDCT) denoising for

he first time. They developed an encoder-decoder dilation network

ased on token-to-token (T2T) ViT, namely TED-net. TED-net is a U-

tructure model that uses the dilation in the T2T stage to enlarge the

eceptive field. Luthra et al. [164] proposed an edge-enhancement-

ased transformer (Eformer) that uses transformer blocks to construct an

ncoder-decoder architecture for medical image denoising. Transformer

odels and their applications in the task of LDCT denoising remain

carce. 

.4. Detection 

The meaning and terminology of ’detection’ varies across technical

nd clinical fields. In technical areas, it often refers to checking for the
71
xistence of diseases or lesions, whereas in clinical practice it often

eans diagnosis or disease classification, as discussed above. In com-

uter vision, detection aims to identify the location of objects in an in-

ut image and predict their categories/classes. In this section, detection

efers to object detection. 

Transformers dealing with detection tasks using medical images

re often combined with CNN blocks, where a CNN is used to ex-

ract features from medical images, and the transformer architecture is

sed to enhance the extracted features for downstream detection. Shen

t al. [166] proposed a DETR-based model, namely COTR, for the de-

ection of polyps in the colon. DETR [14] is a primer method for object

etection in computer vision. COTR is composed of a CNN for feature ex-

raction, transformer encoder layers interleaved with convolutional lay-

rs for feature encoding and recalibration, transformer decoder layers

or object querying, and a feed-forward network for detection predic-

ion. They inserted convolutional layers into the transformer encoder

or high-level image feature reconstruction and convergence accelera-

ion. Ma et al. [167] proposed a TR-Net that combines CNN and trans-

ormer nets to detect significant stenosis in multiplanar reformatted im-

ges. Their model employs a shallow 3D-CNN to extract local seman-

ic features of coronary regions while ensuring the model’s efficiency.

ext, transformer encoders are used to learn correlations between dif-

erent regions of the local stenosis at each position of a coronary artery.

hus, TR-Net can accurately detect stenosis after aggregating informa-

ion from local semantic features and global semantic features. Jiang

t al. [165] constructed a YOLOv5s-based transformer for the detection

f caries, called RDFNet. The model uses the FReLU activation function

o activate complex visual-spatial information of images for efficiency

oosting. Kong et al. [168] proposed CT-CAD, a context-aware hybrid
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Table 4 Transformers for detection tasks

References Disease Organ Dataset Highlight

RDFNet [165] Caries Tooth - Transformer for feature extraction

COTR [166] Polyp Lesion Colon& rectum ETIS-LARIB CVC-ColonDB Convolutions × Transformer 

TR-Net [167] Coronary arteries significant stenosis Coronary arteries -

CT-CAD [168] Chest abnormality detection Chest Vinbig chest Chest Det 10 Context-aware feature extractor

Tao et al. [169] Vertebrae detection Spine VerSe 2019 challenge MICCAI-CSI 2014 challenge Inscribed sphere-based object detector
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ransformer for end-to-end detection of chest abnormalities on on X-ray

mages. Tao et al. [169] designed a spine-transformer to address auto-

atic detection and localization of vertebrae in arbitrary field-of-view

pine CT ( Table 4 ). They formulated the detection as an one-to-one set

rediction problem. 

.5. Registration 

Transformers have several advantages in image registration tasks

wing to their self-attention mechanism, which enables precise spa-

ial mapping between moving and fixed images. Chen et al.pioneered

he use of transformers for image registration. Inspired by the archi-

ecture of TransUnet [78] , they proposed ViT-V-Net [29] , which com-

ines ViT and V-Net by simply altering the network architecture of Vox-

lMorph (a conventional registration network) [174] . ViT-V-Net pro-

uced superior performance against benchmark methods. In an exten-

ion of their work, they developed TransMorph [175] for volumet-

ic medical image registration. In this method, the Swin-Transformer

31] was used as the encoder network to capture the spatial corre-

pondence between input moving and fixed images, and a ConvNet

ecoder was used to map the information provided by the trans-

ormer encoder onto a dense displacement field. Long skip connec-

ions were deployed to maintain the flow of local information be-

ween the encoder and decoder stages. Transformers-based registration

ethods remain rare and need further exploration and research in the

uture. 

.6. Video-based applications 

Because of a limited receptive field, CNNs cannot fully utilize the

lobal temporal and spatial information in continuous video frames;

owever, transformers can overcome this defect. Ji et al. [176] proposed

NS-Net (Progressively Normalized Self-attention Network) for accurate

olyp segmentation from colonoscopy videos. Kondo et al. [177] pro-

osed LapFormer to detect surgical tools in laparoscopic surgery

ideos. Czempiel et al. [178] introduced OperA to predict surgical

hases from long video sequences. Reynaud et al. [179] adopted

 transformer architecture, which contained a residual autoencoder

etwork and a BERT model, to analyze videos of arbitrary length.

ong et al. [180] applied transformers to estimate surgical scene

epth. 

. Discussion

Transformers have been successfully applied to many applications

n almost all fields of medical image analysis. However, the deployment

f machine learning methods in real clinical applications can lead to

oor performance owing to several challenges. Among them, the most

rgent challenge is label scarcity, especially in scene-understanding

asks, e.g., segmentation and detection, which usually need pixel-

ise precise labeling. Learning from noisy labels presents a bigger

hallenge. In addition, building advanced computer aided diagnosis

CADx) methods requires the use of multi-modality clinical data in a

ulti-task manner – a versatile learning approach that is difficult in

esign. 
72
.1. Transformers under different learning scenarios 

.1.1. Multi-task learning 

Building models with multiple tasks helps to improve their gener-

lizability, for which there is high demand in the field of medical im-

ge analysis. A frequently used framework unifies classification and seg-

entation in one model [187-188] . For instance, Chen et al. [188] pro-

osed Multi-Task TransUNet (MT-TransUNet) to jointly learn segmenta-

ion and classification of skin lesions. With local details (e.g., skin color,

exture) and long-range context (e.g., skin lesion shape, physical size)

xtracted by CNNs and ViTs, the method achieved SOTA performance

nd efficiency improvements in model parameters and inference speed.

ui et al. [189] combined detection with segmentation tasks to develop

 novel transfer learning method, CST, with a transformer-based frame-

ork for joint CRC region detection and tumor segmentation. For detec-

ion, the generated region proposals of the input images, as well as the

osition features obtained by the encoder-decoder module, were used as

he input to a DETR network. For segmentation, the model used image

atches as inputs, which were projected into a sequence of embeddings.

.1.2. Multi-modal learning 

Using multiple modality data provides complementary evidence for

iagnosis. For example, researchers have explored the use of combi-

ations of OCT and visual field (VF) testing to aid in the diagnosis of

ye diseases. Song et al. [71] used transformers for glaucoma diagnosis.

heir model used an attention mechanism to model the pairwise rela-

ions between OCT features and VF features. Next, the attention mech-

nism was applied again to calculate the regional relations of features

etween the VF areas and the quadrants of the retinal nerve fiber layer.

he complementary information was passed from one modality to an-

ther by a transformer model. 

Monajatipoor et al. [184] developed a transformer-based vision-and-

anguage model that combined the efficient PixelHop++ model with

he BERT model. Specifically, the BERT model was pretrained using in-

omain knowledge. The model was proved to be effective when trained

n small-scale datasets. The extracted vision features and the word em-

eddings were fed into the transformer for final diagnosis. Although the

odel decreased the need for massive annotations of medical images,

he pretraining of the language model still needed a large amount of

linical report data. Jacenków et al. [186] combined text with CXR for

isease classification. They observed that the interpretation and report-

ng of an image was affected by the scan request text, which served

s the indication field in the radiology report. Zheng et al. [182] fo-

used on feature fusion of multi-modal information, considering the la-

ent inter-modal correlation. They proposed a transformer-like modal-

ttentional feature fusion approach (MaFF) to extract rich information

rom each modality while mining the inter-modal relationships. Next,

n adaptive graph learning mechanism was utilized to construct latent

obust graphs for downstream tasks based on the fused features. The

ethod achieved significant improvements in the prediction of AD and

utism. Dai et al. [185] proposed TransMed for the diagnosis of parotid

land tumor. TransMed combines the advantages of CNN and trans-

ormer networks to capture both low-level textures and cross-modality

igh-level relationships. The model first processes multi-modal images

s sequences by chaining and sending them to a CNN for feature ex-

raction. The feature sequences are then fed into the transformers to
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Table 5 Transformers for multi-modal learning

References Disease Organ Dataset Highlight Task

CLIMAT [181] Alzheimer’s Disease Brain ADNI Use multi-trans to mimic radiologist and general

practitioner interactions

Prognosis

Zheng et al. [182] Alzheimer’s disease Brain TADPOLE Proposes a modal-attentional multi-modal fusion Prediction

Qiu et al. [183] Alzheimer’s disease Brain ADNI Build a graph based on rich multi-modal features;

proposes graph trans to classify

Classification

Autism spectrum Brain ABIDE Prediction

BERTHop [184] Thoracic Disease Chest OpenI Incorporates PixelHop + into a trans-based model; 

adopts in-domain pretrained BERT

Diagnosis

DRT [71] Glaucoma Eye ZOC-OCT&VF Use two relation module to extract inter-modal relation;

use trans to fuse features

Diagnosis

TransMed [185] Parotid gland tumor Parotid gland ∗ Use trans to capture cross-modality mutual information

and fuse features

Prediction

Jacenków [186] Thoracic diseases thorax MIMIC-CXR Use text to assist image classification Classification

Table 6 Transformers for weakly-supervised learning

References Disease Organ Dataset Highlight Task

Weakly Supervised

Li et al. [192] Diabetic Retinopathy Eye Messidor Induced Self-Attention to model relation of instances

within a bag

Classification

Rymarczyk et al. [193] Diabetic Retinopathy Eye Messidor self-attention with Attention-based MIL Pooling Classification

Yang et al. [194] Multiple Nodule Malignancy Lung LIDC-IDRI inter-solitary-nodule relationships Classification

Lung Nodule Lung LUNA16, Tianchi Val Detection

MIL-VT [195] Diabetic Retinopathy Eye APTOS2019 MIL-head to provide complementary information of

patches to the class token

Classification

Retinal Fundus Disease Eye RFMiD2020 Diagnosis

TransMIL [196] Breast Cancer Metastasis Breast CAMELYON16 explore both morphological and spatial information

between different instances

Detection

Lung Cancer Lung TCGA-NSCLC Classification

Kidney Cancer Kidney TCGA-RCC Classification

Self-Supervised

Park et al. [43] COVID-19 Lung ∗ Pretrain model on large scale data; evaluate necessity of

self-supervised pretraining

Diagnosis

Jun et al. [129] Alzheimer’s disease Brain ADNI Pretrain trans with masked encoding vector prediction

as SSL proxy task

Diagnosis

Brain Age Brain ADNI Prediction

TransPath [197] CRC Colorectal NCT-CRC-HE Collect approximately 2.7 million images for

self-supervised pretraining

Classification

Breast Cancer Breast PatchCamelyon Classification

Colorectal polyps Colorectal MHIST Classification

Truong et al. [198] Axillary lymph node cancer Lymph PatchCam Validate ViT-based self-supervised method by

comparison

Classification

Diabetic retinopathy Eye APTOS Classification

Pneumonia Chest Pneumonia chest

X-ray

Classification

Thorax Disease Chest NIH chest X-ray Classification

Sriram [199] COVID-19 Lung NYU COVID Adopt momentum contrastive learning for SSL

pretraining

Prognosis

Chen [199] Tissue phenotyping Tissue TCGABRCA cohort

CRC-100K

BreastPathQ

DINO-based knowledge distillation applied on ViT Classification
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earn the relationships between sequences as well as conducting fea-

ure fusion. Their work leveraged transformers to capture mutual in-

ormation from images of different modalities, resulting in better per-

ormance and efficiency. Nguyen et al. [181] attempted to mimic the

nteraction between a radiologist and a general practitioner in the diag-

osis of knee osteoarthritis and prediction of prognosis. They proposed a

linically-inspired multi-agent transformers (CLIMAT) framework with

 tri-transformer architecture ( Table 5 ). In this framework, first, a fea-

ure extractor with a combination of transformer and CNN is used to

redict the current state of a disease. Next, the non-image auxiliary

nformation is fed into another transformer to extract context embed-

ing. Finally, an additional transformer-based general practitioner mod-

le forecasts disease trajectory based on the current state and context

mbedding. 

To conclude, transformers are regarded as a promising approach

o bridge CV and NLP tasks [190] . Under this assumption, Radford

t al. [191] built a multi-modal transformer, CLIP, that provided
 a  

73
ero-shot ability for recognizing images from text descriptions with-

ut image labeling. These strength of this approach also indicates a

otential way of building more robust and accurate CADx methods

or real clinical applications, where multiple data types, e.g. , clini-

al, laboratory, and imaging data, can be used as diverse source of

nformation. 

.1.3. Weakly supervised learning 

One of the weakly supervised conditions in medical images is that the

OI for a certain disease is relatively small in the image, and only image-

evel labeling is available. Multiple instance learning (MIL) was adopted

s a solution to this problem. In MIL, the training samples include sets

f instances, called bags. The supervision is provided only for bags, and

ndividual labels of the instances contained in the bags are not provided

200] .

Although many existing MIL methods assume that positive and neg-

tive instances are sampled independently from a positive and a nega-
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g  
ive distribution [200] , instances in a bag are relational, especially in

edical image analysis. The learning scenario of MIL does not follow

he independent and identically distributed assumption, as the relation-

hips between instances are not neglected. In such situations, ViTs can

e leveraged to build correlations between instances to achieve bet-

er high-level representations. Li et al. [192] proposed a transformer-

ased MIL framework with an induced attention block, which calculates

he attention while bypassing the quadratic computational complexity

aused by the pairwise dot product. The feature aggregator of the frame-

ork is also based on multi-head attentions. It merges the previously

entioned features into bag representations. Yang et al. [194] treated

ultiple pulmonary nodules of a patient as a bag and each nodule

s an instance. Unlike conventional MIL methods that use a pooling

peration to get bag-level representations, they used a 3D DenseNet

o learn solitary-nodule-level representations at the voxel level. Next,

he generated representations were fed into the transformer to learn

he nodule relationships from the same patient. To reduce the com-

utational burden, they applied in-group scaled-dot-production atten-

ion, extracted from split channel features. Shao et al. [196] focused on

he correlations between different instances as opposed to simply as-

uming that instances are independent and identically distributed. To

his end, they proposed a transformer-based MIL framework to deal

ith the whole-slide image classification problem. Their framework

sed transformer layers to aggregate morphological information and

 pyramid position encoding generator to extract spatial information.

hey also used the Nystrom method to calculate approximated self-

ttentions, which reduced computational complexity from 𝑂( 𝑛 2 ) to 𝑂( 𝑛 ) .
ymarczyk et al. [193] focused on the attention mechanism and re-

ised attention-based MIL pooling (AbMILP), which aggregates informa-

ion from a varying number of instances. They developed self-attention

bMILP (SA-AbMILP) to model the dependencies between different in-

tances within a bag. They also extended the calculation of attentions

y introducing different kernels, which played the same part as the dot

roduct. They evaluated their work on histological, microbiological, and

etinal datasets. Yu et al. [195] explored the applicability of ViTs to reti-

al disease classification in fundus images ( Table 6 ). They developed

 MIL-enhanced ViT (MIL-VT) by adding a plug-and-play MIL learn-

ng head to the ViT to exploit the features extracted from individual

atches. 

Another weakly supervised example is semi-supervised learning,

hich requires only a small amount of labeled data to exploit knowl-

dge from a large amount of unlabeled data. Luo et al. [201] first com-

ined a CNN and transformer for semi-supervised medical image seg-

entation. They introduced cross-teaching between the CNN and the

ransformer, with the prediction of each network used as a pseudo

abel to supervise the other network. Zhao et al. [202] proposed a

ontext-aware network called CA-Net for semi-supervised LA segmenta-

ion from 3D MRI. CA-Net contains two main modules, a trans-V mod-

le that combines a transformer and V-net to learn contextual infor-

ation, and a discriminator to calculate an adversarial loss for learn-

ng the unlabeled data. Xiao et al. [203] used a dual teacher structure

nvolving a CNN and a transformer to guide a student segmentation

odel. 

.1.4. Self-supervised learning (SSL) 

Successful training of a transformer model relies on large-scale anno-

ated data, which are rarely available in real clinical facilities. The SSL

aradigm was created to handle such issue. SSL aims to improve the per-

ormance of downstream tasks (e.g., classification, detection, and seg-

entation) by transferring knowledge from a related unsupervised up-

tream task ( i.e. , learning of vision concepts), and pretrains the model

sing self-contained information in the unlabeled data [204] . In prac-

ice, training of SLL ViTs generally involves pretraining the model on

mageNet, followed by a fine-tuning step on the target medical image

ataset. This can boost the performance of ViTs in comparison with

NNs and enable SOTA accuracy to be achieved [205–208] . 
74
Truong et al. [198] evaluated the transferability of self-supervised

eatures in medical images. They pretrained features using DINO, a self-

upervised ViT. They used the ViT as a backbone and demonstrated that

t could outperform SimCLR and SwAV. Park et al. [43] used a public

arge-scale CXR classification dataset to pretrain the backbone network.

he features extracted by the pretrained backbone model were then

ed into a ViT to diagnose COVID-19. Jun et al. [129] proposed a self-

upervised transfer learning framework that could better represent the

patial relationships in 3D volumetric images to facilitate downstream

asks. They converted 3D volumetric images into sequences of 2D im-

ge slices from three views and fed them into the pretrained backbone

etwork, which consisted of a convolutional encoder and a transformer.

he pretraining of the transformer was implemented using masked en-

oding vectors, which served as a proxy task for SSL. The downstream

asks included brain disease diagnosis, brain age prediction, and brain

umor segmentation, using 3D volumetric images. They also explored

 parameter-efficient transfer learning framework for 3D medical im-

ges. Wang et al. [197] collected a large public histopathological image

ataset to pretrain their proposed hybrid CNN-transformer framework.

oreover, they designed a token-aggregating and excitation module to

urther enhance global weight attention by taking all tokens into consid-

ration. Sriram et al. [199] explored the applications of transformers for

OVID-19 prognosis. They proposed a multiple image prediction model

hat could take a sequence of images along with the corresponding scan-

ing time as input. To deal with missing COVID-19 images, they used

omentum contrast learning, a self-supervised method, to pretrain the

eature extractor network. In addition to the features extracted from

-rays, they used continuous positional embedding to add information

ased on the time-step. The concatenation of features and continuous

ositional embeddings was fed into the transformer to predict the pos-

ibility of an adverse event. Chen et al. [209] showed that ViT using

INO-based knowledge distillation could learn data-efficient and inter-

retable features in histology images by training various self-supervised

odels with validation on different weakly supervised tissue phenotyp-

ng tasks. Notably, they achieved excellent performance on different at-

ention heads in the ViT while learning distinct morphological pheno-

ypes. 

.2. Model improvement: quantification, acceleration, and interpretation 

Several studies have focused on model efficiency within the med-

cal imaging field. A natural idea is to simplify the attention mech-

nism, which demands the largest workload in transformers. Gao

t al. [84] proposed an efficient self-attention mechanism and posi-

ion encoding, which significantly reduced the complexity of the self-

ttention operation from 𝑂 ( 𝑛 2 ) to approximately 𝑂 ( 𝑛 ) . This circum-

ented the hurdle of transformers requiring huge amounts of data to

earn vision inductive bias. The hybrid-layer design could initialize

ransformers as convolutional networks without the need for pretrain-

ng. The aforementioned VOLO proposed by Liu et al. [48] replaced the

tandard ViTs with Linformer, which performs an internal self-attention

echanism, reducing the original space time complexity of 𝑂 ( 𝑛 2 ) to a
maller complexity of 𝑂 ( 𝑛 ) . Li et al. [210] redesigned the transformer

lock in their TransBTSV2 model, resulting in a shallower but wider ar-

hitecture compared with conventional transformer-based methods. In-

pired by dilated convolution kernels, Wu et al. [106] conducted global

elf-attention in a dilated manner, enlarging the receptive fields with-

ut increasing the patches and thus reducing computational costs. Xu

t al. [94] built a multi-scale searching space composed of a multi-

ranch parallel searching block, which connected a CNN and trans-

ormer in parallel. They also proposed an efficient resource-constrained

earch strategy to simultaneously optimize accuracy and costs (e.g.,

arams. and FLOPs) of the model. 

There have been fewer studies attempting to solve the model effi-

iency problem in MIA rather than in CV. However, as medical images

enerally come in large sizes and small quantities, there is an urgent
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eed to solve this problem. Thus, we would like to see more work in

his specific research direction. 

.3. Comparison with CNNs 

CNNs were dominant in CV prior to the emergence of ViTs, including

n the field of medical image analysis. Much effort has been invested in

mproving the performance of CNN-based classifiers for both natural

nd medical images. Several studies have investigated whether CNN-

ased methods could work on ViTs. Moreover, as ViTs have ranked top

mong several benchmarks, many studies have focused on performance

omparisons between ViTs and CNNs. 

Large-scale datasets are required for to obtain desirable performance

ith transformers. However, in the medical image analysis field, avail-

ble images and annotations are limited. To alleviate this problem,

any methods have adopted convolutional layers in ViTs to boost per-

ormance with limited medical images and have also leveraged the

ower of transfer learning and SSL. Matsoukas et al. [205] explored

hether transfer learning and SSL regimes could benefit ViTs. They con-

ucted several experiments to compare the performance of a CNN ( i.e. ,

esNet50) and a ViT ( i.e. , DEIT-S) using different initialization strate-

ies: (1) randomly initialized weights, (2) transfer learning using Ima-

eNet pretrained weights, and (3) self-supervised pretraining on the tar-

et dataset with the same initialization as in (2). They evaluated these

ethods on the APTOS 2019, ISIC 2019, and CBIS-DDSM datasets. It

an be concluded that standard procedures, e.g., initialization using Im-

geNet pretrained weights and leveraging SSL, can bridge the perfor-

ance gap between CNN and ViT. Krishnamurthy et al. [211] adopted

 transfer learning scheme in both CNNs and ViTs for Pneumonitis di-

gnosis. They first pretrained their models on ImageNet and fine-tuned

he classifier on their private dataset. However, their comparison was

ased on fine-tuning with frozen backbone layers, which limited the

erformance of feature extraction when adapted to the target domain.

ruong et al. [198] assessed the transferability of self-supervised fea-

ures in medical imaging tasks. They chose ResNet-50 as the backbone

nd pretrained it using three self-supervised methods: SimCLR, SwAV,

nd DINO. DINO used ViT as the backbone and consistently outper-

ormed other self-supervised techniques as well as the supervised base-

ine by a large margin. They proposed a model-agnostic technique, i.e. ,

ynamic visual meta-embeddings, to combine pretrained features from

ultiple SSL methods with self-attention. 

For the task of multi-scale cell image classification, Liu

t al. [212] developed an experimental platform to compare mul-

iple deep learning methods, including CNNs and ViTs. They validated

he performance of deep learning models on standard and scaled data

y changing the cell aspect ratios of the images. The results suggested

hat deep learning models, including ViTs, are robust to changes in

he cell aspect ratio in cervical cytopathological images. For shoulder

mplant X-ray manufacturer classification, Zhou et al. [213] compared

he performance of various models, including traditional machine

earning methods, CNN-based deep learning methods, and ViTs. The

esults showed that ViTs achieved the best performance in these

asks, and that transfer learning improved ViT by a large margin.

ltay et al. [214] aimed to achieve early pre-clinical prediction of

D using MRI. They compared transformers against a baseline 3D

NN model and 3D recurrent visual attention model, and showed that

ransformers achieved the best accuracy and F1 scores. Adjei-Mensah

t al. [215] showed that CNNs outperformed ViTs on low-resolution

edical image recognition. Galdran et al. [216] also showed that CNNs

utperformed ViTs on diabetic foot ulcer classification in a few-data

egime. 

In summary, existing studies have not shown that ViTs can out-

erform CNNs in all scenarios, particularly in both few-shot and

ow-resolution medical image analysis. Thus, similar to the case for

V methods, most recent studies have built hybrid models with

onvolutions. 
75
. Conclusion

Transformers are now transforming the field of computer vision.

lso, research using transformers is undergoing rapid growth in the field

f medical image analysis. However, most of the current transformer-

ased methods can be naturally and simply applied to medical imaging

roblems without drastic changes. Thus, advanced methodologies, e.g. ,

eakly supervised learning, multi-modal learning, multi-task learning,

nd model improvement, are rarely explored. Also, only a few studies

ave focused on general problems of the model, e.g. , parallelization,

nterpretability, quantification, and safety. These indicate future direc-

ions of for medical transformer research. 
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